Efficient Reduced Magnetic Vector Potential Method for Superconducting Accelerator Magnets

Laura D'Angelo and Herbert De Gersem

Superconducting Accelerator Magnet = Multi-Scale Problem

Challenges for the simulation:

- Multi-scale problem
- Multi-physical problem
- Three-dimensional effects
- Nonlinear material characteristics
- ⇒ Meshing everything in full 3D resolution is expensive!

Superconducting Accelerator Magnet = Multi-Scale Problem

Challenges for the simulation:

- Multi-scale problem
- Multi-physical problem
- Three-dimensional effects
- Nonlinear material characteristics
- Meshing everything in full 3D resolution is expensive!

Solution idea:

Do not resolve the coils/cables/wires in the finite-element mesh, discretize by (macro-)wires

- 1 Reduced Magnetic Vector Potential Formulation
- 2 Performance Comparison
- 3 Quadrupole Magnet Simulation
- 4 Summary and Outlook

- 1 Reduced Magnetic Vector Potential Formulation
- 2 Performance Comparison
- 3 Quadrupole Magnet Simulation
- 4 Summary and Outlook

Reduced Magnetic Vector Potential (RMVP) Ansatz

Split the magnetic vector potential (MVP):

$$\vec{A}(\vec{r},t) = \underbrace{\vec{A}_{S}(\vec{r},t)}_{\text{source MVP}} + \underbrace{\vec{A}_{T}(\vec{r},t)}_{\text{reduced MVP}}$$

 $\vec{A}_{s}(\vec{r}) = \frac{\mu_{0}}{4\pi} \int_{cor} \frac{1}{|\vec{r} - \vec{r}'|} d\vec{r}'$

Biot-Savart integral for each wire \mathcal{L}' :

- V_a : air domain with source currents
- $-V_i$: source-free domain, typically iron yoke
- Γ: interface surface between V_a and V_i

Standard RMVP Formulation (Christian Paul 1997)

- 1. Evaluate the source MVP \vec{A}_s via Biot-Savart for each point $\vec{r} \in V$.
- 2. Find the reduced MVP $\vec{A}_r \in H_r(\text{curl}; V) = \left\{ \vec{A}_r \in H(\text{curl}; V) : \vec{n} \times \vec{A}_r = -\vec{n} \times \vec{A}_s \text{ on } \partial V \right\}$, s.t.

$$\left(\nu\nabla\times\vec{A}_{\mathrm{r}},\nabla\times\vec{A}_{\mathrm{r}}'\right)_{V}=-\left(\nu\nabla\times\vec{A}_{\mathrm{s}},\nabla\times\vec{A}_{\mathrm{r}}'\right)_{V_{\mathrm{i}}} \quad \forall\vec{A}_{\mathrm{r}}'\in H_{\mathrm{r}}(\mathrm{curl};\mathrm{V})$$

- 3. Compose total MVP: $\vec{A} = \vec{A}_s + \vec{A}_r$ in V.
 - Can get computationally expensive!

- 1. Evaluate the source MVP \vec{A}_s via Biot-Savart only at the interface $\Gamma = \partial V_a$and on every point of interest $\vec{r} \in V_a$.
 - Huge improvement in computational efficiency!

source MVP $\vec{A}_{\scriptscriptstyle S}$ (everywhere) and source current

2. Find the image MVP $\vec{A}_m \in H(\text{curl}; V_a)$, $\vec{n} \times \vec{H}_m \in H^{-1/2}(\text{curl}; \Gamma)$, s.t.

$$\begin{split} \left(\nu_0 \nabla \times \vec{A}_{\mathrm{m}}, \nabla \times \vec{A}'_{\mathrm{m}}\right)_{V_{\mathrm{a}}} + \left(\vec{n} \times \vec{H}_{\mathrm{m}}, \vec{A}'_{\mathrm{m}}\right)_{\Gamma} &= 0 \\ \left(\vec{A}_{\mathrm{m}}, \vec{n} \times \vec{H}'_{\mathrm{m}}\right)_{\Gamma} + \left(\vec{A}_{\mathrm{s}}, \vec{n} \times \vec{H}'_{\mathrm{m}}\right)_{\Gamma} &= 0 \\ \end{array} \qquad \qquad \forall \vec{A}'_{\mathrm{m}} \in H(\mathrm{curl}; V_{\mathrm{a}}), \\ \left(\vec{A}_{\mathrm{m}}, \vec{n} \times \vec{H}'_{\mathrm{m}}\right)_{\Gamma} + \left(\vec{A}_{\mathrm{s}}, \vec{n} \times \vec{H}'_{\mathrm{m}}\right)_{\Gamma} &= 0 \\ \end{aligned}$$

image MVP $ec{A}_{
m m}$ in $V_{
m a}$

3. Find the reaction MVP $\vec{A}_g \in H_0(\text{curl}; V)$ s.t.

$$\left(\nu\nabla\times\vec{A}_{\mathrm{g}},\nabla\times\vec{A}_{\mathrm{g}}'\right)_{V}=\left(\vec{n}\times\vec{H}_{\mathrm{s}},\vec{A}_{\mathrm{g}}'\right)_{\Gamma}+\left(\vec{n}\times\vec{H}_{\mathrm{m}},\vec{A}_{\mathrm{g}}'\right)_{\Gamma} \quad \forall\vec{A}_{\mathrm{g}}'\in H_{0}(\mathrm{curl};V).$$

reaction MVP $\vec{A}_{\rm g}$ in V, surface current density $\vec{K}_{\rm g}=\vec{n}\times(\vec{H}_{\rm S}+\vec{H}_{\rm m})$ on Γ

$$\vec{A} = \vec{A}_s + \vec{A}_m + \vec{A}_g$$
 in V_a , $\vec{A} = \vec{A}_g$ in V_i .

- 1 Reduced Magnetic Vector Potential Formulation
- 2 Performance Comparison
- 3 Quadrupole Magnet Simulation
- 4 Summary and Outlook

Performance Comparison

Benchmark Model with > 100,000 DoF and 18 wires

- 1. **Biot-Savart** computation is dominant ⇒ Parallelize and use fast-multipole methods
- 2. **Updated RMVP** formulation by far superior than standard one

Quadrupole Magnet Simulation: Magnetic Flux Density

MQXA low-beta quadrupole @LHC

- 1 Reduced Magnetic Vector Potential Formulation
- 2 Performance Comparison
- 3 Quadrupole Magnet Simulation
- 4 Summary and Outlook

Summary

Goal: Tackle the multi-scale problem of superconducting accelerator magnets

Updated RMVP Formulation:

- No explicit meshing of wires
- Biot-Savart's law for source field computation
- But evaluate only on Γ ⇒ High efficiency increasement
- Superior efficiency to original RMVP

→ QR code to paper

Outlook

- Expansion of the RMVP method for magnetization and superconducting effects
- Goal: Calculation of transient effects in high-temperature superconducting coils
- Collaborative research with Karlsruhe Institute of Technology (KIT)

Outlook

- Expansion of the RMVP method for magnetization and superconducting effects
- Goal: Calculation of transient effects in high-temperature superconducting coils
- Collaborative research with Karlsruhe Institute of Technology (KIT)

Thank you for your attention!
Ouestions?

