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Recipes to choose from

EXFEL Spec

[Reschke et al., Phys. Rev. Accel. Beams, 20, 042004 (2017)]
[Grassellino et al., SUST, 26, 102001  (2013) ]
[Grassellino et al., SUST, 30, 094004  (2017) ]
[Posen et al., Phys. Rev. Applied 13, 014024 (2020)] Cavities limited by quench

XFEL Cavity
Doped Cavity
Infused Cavity
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What happens during Mid-T Bake?

Oxygen

Nb2O5 dissolves around ≈250°C

Mid-T Bake:
T:  300°C – 400°C
t ≈ 3-20h
p ≤ 10-6 mbar 
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Failed HPR showed unwanted oxide growth

In two cases HPR on cavities created rainbowspots
(AC126, NXPKU5)

[Wu, A. T., et al. Effects of the thickness of niobium surface 

oxide layers on field emission. IPAC 2018 - MOPC118]

Obvious pentoxide growth due to failed HPR



Extensive HPR → thicker Nb2O5 → more O for mid-T
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[Ghanbari, R. TTC Workshop 2022, Aomori]
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What information is encoded in f vs. T?

T

𝑓𝑡𝑜𝑡 ∝
Γ

𝜆 ℓ, 𝑇

Tc

j 𝜆 ℓ, 𝑇

• Frequency shift is sensitive to interstitial concentration

𝜆 ℓ, 𝑇 = 𝜆𝐿 𝑇 1 +
𝜉0

ℓ
(equation valid for dirty limit)

• Δftot for EXFEL type cavities is typcially 5-6 kHz

Δftot



Dip is deeper for 18xHPR – Δftot similar
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T(fmin) ≈ 9.04K

T(End) ≈ 8.9K

Cavity Treatment Δfdip/kHz

1DE19 4.5h @ 335°C 1.1

1AC02 3.25h @ 335°C 1.4

1RI04 3h @ 250°C 0.9

1DE07 20h @ 250°C 2.0

1DE79 18xHPR + 3h @ 300°C 3.9

• Mid-T: more interstitials → larger Δf, but yet no dip
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Microscopic model for disordered superconductor

• An increased oxygen concentration reduces Tc of Nb by 0.93K per 1 at.%

- to have a dip minimum at 9.1K we would need ≈ 0.2 at.%

- „end of dip“ around 8.9K ≈ 0.3 at.%

• Solubility limit of O in Nb is 1 at.% @ 500°C and 0.33 at.% at 145°C

• We have shown that C diffusion speed in Nb along GB vary with GB orientation, increasing disorder by 

spatially varying concentration

- Assume same is true for O: not homogenous distributed within the rf layer, but clusters with uneven O-concentration

→ Expect non-constant (gaussian shaped) Tc reduction 

→ Lowest Tc equal to the max. at.% concentration at RT (≈ 0.33 at.%)

→ Only locally saturated – not globally. If SIMS spot size ≈ multiple grains, obtained cO below saturation limit

[Desorbo, W. Phys. Rev. 132 (1963): 107.]

[Kolchin, O.P., et al. Soviet Atomic Energy 45 (4) (1978): p999.]

[Benvenuti, C., et al. 10th SRF (2001): p441.]
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Local Disorder: SIMS is too coarse
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• Local disorder ≈ order of grain size and less (50 µm) 
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• Average cO for that are is 0.15 at.%
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Local Disorder: SIMS is too coarse

• Local disorder ≈ order of grain size and less (50 µm) 

• SIMS spot size is usually ≈ 100x100 µm² or larger

• Average cO for that are is 0.15 at.%

• But locally saturated with 0.3 at.%

• Need for better spatial and chemical resolution 

→ „Grain Mapping“ 
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Grain observation under heat treatment with XRR

Polycrystalline Nb @ 250-300°C in Ar atm. 
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Disordered superconductor show dip
[Barra, M., et al. SUST 18.3 (2005): 271.]

T

Tc,Nb

j 𝜆 ℓ, 𝑇

• Mathematically speaking, the geomtery constant Γ is not constant
• Dip properties ∝ cluster distribution causing current redistribution
→ Dip caused by clusters and not homogenous O-enriched Nb-layer
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[Wenskat, M., et al SRF2023 TUIBA02.]

[Wenskat, M., et al Supercond. Sci. Technol. 36 (2023) 015010 (11pp).]
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• Diffuse O out of RF layer
→ HFQS reappears and Δftot / Δfdip decreases again
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Conclusion

• Too high cO near the surface is not good

- 18xHPR before midT of 1DE7
- 1xmidT vs. 2xmidT of 1DE10

• Too low cO leads to HFQS again

- 1DE12 or every 800°C reset

• Optimal recipe depends on furnace – „thermal budget“

- 1DE10 vs. 1DE18

• Sweet spot for Q0 seems to exist – right amount of disorder ?

- continue investigation & model building (Δftot vs. Δfdip, Eacc, grain mapping)
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Thanks… 

Questions?

20

• to DESY for the cavity measurements
• to you for listening



Back Up



Correlation with thermal budget?

Assumed Δf is depends cO …
and we know that NSF cO goes down with larger thermal budget / larger 𝑧 …
some correlation of Q0 with 𝑧 expected as well – yet weaker as Fick‘s law does not accomodate uneven GB diffusion / saturation effects
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Current Redistribution [Checchin, M. et al., Appl. Phys. Lett. 117, 032601 (2020)]

[Pambianchi, M. et al., Phys. Rev. B 50, 13659]

Consequence:
Currents shifted away from the surface where “lossy mechanism(s)” occur 
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Frequency shift is frequency dependent

• Qn = n x 433MHz

• Lower frequency fop → lower Δftot

• That is because Γ is frequency dependent

• If the dip is caused by current redistribution
→ Δfdip should depend on fop as well
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X-Ray Reflectivity (XRR)

Non-destructive method of analysis

Weak scattering cross-section --> large penetration depth 

[Dissertation Uta Hejral, 2015]
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101 on XRR: Information from the curve

Critical angle: Density

Plateau: Sample 
geometry, 
roughness, 
instrument

Oscillation distance: Layer thickness

Amplitude: Roughness, density variations, 
resolution


