

Interstitial oxygen tailoring by various surface treatments and how it impacts Q₀

Rezvan Ghanbari, Artem Zaidman, Marc Wenskat

on behalf of the UHH SRF R&D Team

What happens during Mid-T Bake?

Mid-T Bake:

T: 300°C - 400°C

t ≈ 3-20h

 $p \le 10^{-6} \text{ mbar}$

What happens during Mid-T Bake?

Mid-T Bake:

T: 300°C - 400°C

t ≈ 3-20h

 $p \le 10^{-6} \text{ mbar}$

What happens during Mid-T Bake?

Mid-T Bake:

T: 300°C - 400°C

t ≈ 3-20h

 $p \le 10^{-6} \text{ mbar}$

 Nb_2O_5 dissolves around ≈ 250 °C

Failed HPR showed unwanted oxide growth

Failed HPR showed unwanted oxide growth

In two cases HPR on cavities created rainbowspots (AC126, NXPKU5)

Failed HPR showed unwanted oxide growth

In two cases HPR on cavities created rainbowspots (AC126, NXPKU5)

[Wu, A. T., et al. Effects of the thickness of niobium surface oxide layers on field emission. IPAC 2018 - MOPC118]

								_
Sample	1	2	3	4	5	6	7)
Voltage (V)	25	37	45	80	95	110	230	١,
Color	Blue	Cyan	Bright Yellow	Green	Yellow	Red	Dark Grey	7
Oxide Thickness (nm)	53	77	93	163	193	223	463	

Obvious pentoxide growth due to failed HPR

Extensive HPR

[Ghanbari, R. TTC Workshop 2022, Aomori]

Extensive HPR

[Ghanbari, R. TTC Workshop 2022, Aomori]

Extensive HPR

[Ghanbari, R. TTC Workshop 2022, Aomori]

component doublet peaks area

total Nb 3d peak area

X-Ray Photoelectron Spectroscopy (XPS)

Reference 0 HPR cycle

Standard recipe 6 HPR cycles

18 HPR cycles

Extensive HPR → thicker Nb₂O₅

[Ghanbari, R. TTC Workshop 2022, Aomori]

Extensive HPR → thicker Nb₂O₅ → more O for mid-T

[Ghanbari, R. TTC Workshop 2022, Aomori]

18x HPR is not beneficial for Q₀

18x HPR is not beneficial for Q₀

18x HPR is not beneficial for Q₀

Different treatments – same rf behaviour

It's not the cavity!

20μm EP between black and red 40μm EP between red and blue

It's not the cavity!

• Frequency shift is sensitive to interstitial concentration

$$\lambda(\ell,T) = \lambda_L(T) \sqrt{1 + rac{\xi_0}{\ell}}$$
 (equation valid for dirty limit)

• Frequency shift is sensitive to interstitial concentration

$$\lambda(\ell,T) = \lambda_L(T) \sqrt{1 + rac{\xi_0}{\ell}}$$
 (equation valid for dirty limit)

Frequency shift is sensitive to interstitial concentration

$$\lambda(\ell,T) = \lambda_L(T) \sqrt{1 + rac{\xi_0}{\ell}}$$
 (equation valid for dirty limit)

Frequency shift is sensitive to interstitial concentration

$$\lambda(\ell,T) = \lambda_L(T) \sqrt{1 + rac{\xi_0}{\ell}}$$
 (equation valid for dirty limit)

Frequency shift is sensitive to interstitial concentration

$$\lambda(\ell,T) = \lambda_L(T) \sqrt{1 + rac{\xi_0}{\ell}}$$
 (equation valid for dirty limit)

 $\lambda(\ell,T)$

- Frequency shift is sensitive to interstitial concentration $\lambda(\ell,T) = \lambda_L(T) \sqrt{1 + \frac{\xi_0}{\ell}} \qquad \text{(equation valid for dirty limit)}$
- Δf_{tot} for EXFEL type cavities is typcially 5-6 kHz

 $\lambda(\ell,T)$

Dip is deeper for $18xHPR - \Delta f_{tot}$ similar

• Mid-T: more interstitials \rightarrow larger Δf , but yet no dip

Cavity	Treatment	Δf _{dip} /kHz	
1DE19	4.5h @ 335°C	1.1	
1AC02	3.25h @ 335°C	1.4	
1RI04	3h @ 250°C	0.9	
1DE07	20h @ 250°C	2.0	
1DE79	18xHPR + 3h @ 300°C	3.9	

• An increased oxygen concentration reduces T_c of Nb by 0.93K per 1 at.%

[Desorbo, W. Phys. Rev. 132 (1963): 107.]

- An increased oxygen concentration reduces T_c of Nb by 0.93K per 1 at.%
 - to have a dip minimum at 9.1K we would need ≈ 0.2 at.%

[Desorbo, W. Phys. Rev. 132 (1963): 107.]

• An increased oxygen concentration reduces T_c of Nb by 0.93K per 1 at.%

- to have a dip minimum at 9.1K we would need ≈ 0.2 at.%

[Desorbo, W. Phys. Rev. 132 (1963): 107.]

- "end of dip" around 8.9K ≈ 0.3 at.%

An increased oxygen concentration reduces T_c of Nb by 0.93K per 1 at.%

[Desorbo, W. Phys. Rev. 132 (1963): 107.]

- to have a dip minimum at 9.1K we would need ≈ 0.2 at.%
- "end of dip" around 8.9K ≈ 0.3 at.%
- Solubility limit of O in Nb is 1 at.% @ 500°C and 0.33 at.% at 145°C

An increased oxygen concentration reduces T_c of Nb by 0.93K per 1 at.%

[Desorbo, W. Phys. Rev. 132 (1963): 107.]

- to have a dip minimum at 9.1K we would need ≈ 0.2 at.%
- "end of dip" around 8.9K ≈ 0.3 at.%
- Solubility limit of O in Nb is 1 at.% @ 500°C and 0.33 at.% at 145°C

- We have shown that C diffusion speed in Nb along GB vary with GB orientation, increasing disorder by spatially varying concentration

 [Dangwal Pandey, A., et al. Appl. Phys. Lett. 119(2021): 194102]
 - Assume same is true for O: not homogenous distributed within the rf layer, but clusters with uneven O-concentration

• An increased oxygen concentration reduces T_c of Nb by 0.93K per 1 at.%

[Desorbo, W. Phys. Rev. 132 (1963): 107.]

- to have a dip minimum at 9.1K we would need \approx 0.2 at.%
- "end of dip" around 8.9K ≈ 0.3 at.%
- Solubility limit of O in Nb is 1 at.% @ 500°C and 0.33 at.% at 145°C

- We have shown that C diffusion speed in Nb along GB vary with GB orientation, increasing disorder by spatially varying concentration

 [Dangwal Pandey, A., et al. Appl. Phys. Lett. 119(2021): 194102]
 - Assume same is true for O: not homogenous distributed within the rf layer, but clusters with uneven O-concentration
- → Expect non-constant (gaussian shaped) T_c reduction

An increased oxygen concentration reduces T_c of Nb by 0.93K per 1 at.%

[Desorbo, W. Phys. Rev. 132 (1963): 107.]

- to have a dip minimum at 9.1K we would need \approx 0.2 at.%
- "end of dip" around 8.9K ≈ 0.3 at.%
- Solubility limit of O in Nb is 1 at.% @ 500°C and 0.33 at.% at 145°C

- We have shown that C diffusion speed in Nb along GB vary with GB orientation, increasing disorder by spatially varying concentration

 [Dangwal Pandey, A., et al. Appl. Phys. Lett. 119(2021): 194102]
 - Assume same is true for O: not homogenous distributed within the rf layer, but clusters with uneven O-concentration
- → Expect non-constant (gaussian shaped) T_c reduction
- \rightarrow Lowest T_c equal to the max. at.% concentration at RT (\approx 0.33 at.%)

• An increased oxygen concentration reduces T_c of Nb by 0.93K per 1 at.%

[Desorbo, W. Phys. Rev. 132 (1963): 107.]

- to have a dip minimum at 9.1K we would need \approx 0.2 at.%
- "end of dip" around 8.9K ≈ 0.3 at.%
- Solubility limit of O in Nb is 1 at.% @ 500°C and 0.33 at.% at 145°C

- We have shown that C diffusion speed in Nb along GB vary with GB orientation, increasing disorder by spatially varying concentration

 [Dangwal Pandey, A., et al. Appl. Phys. Lett. 119(2021): 194102]
 - Assume same is true for O: not homogenous distributed within the rf layer, but clusters with uneven O-concentration
- → Expect non-constant (gaussian shaped) T_c reduction
- \rightarrow Lowest T_c equal to the max. at.% concentration at RT (\approx 0.33 at.%)
- \rightarrow Only locally saturated not globally. If SIMS spot size \approx multiple grains, obtained c_0 below saturation limit

- Local disorder ≈ order of grain size and less (50 μm)
- SIMS spot size is usually $\approx 100x100 \mu m^2$ or larger

Grain observation under heat treatment with XRR

[Wenskat, M., et al SRF2023 TUIBA02.] [Wenskat, M., et al Supercond. Sci. Technol. 36 (2023) 015010 (11pp).]

- 1DE18 and 1DE10 performed similar before and after coating
- Coating was done with same parameters
- Both cavities underwent 3h@300°C ...

[Wenskat, M., et al SRF2023 TUIBA02.] [Wenskat, M., et al Supercond. Sci. Technol. 36 (2023) 015010 (11pp).]

- 1DE18 and 1DE10 performed similar before and after coating
- Coating was done with same parameters
- Both cavities underwent 3h@300°C ...

[Wenskat, M., et al SRF2023 TUIBA02.] [Wenskat, M., et al Supercond. Sci. Technol. 36 (2023) 015010 (11pp).]

- 1DE18 and 1DE10 performed similar before and after coating
- Coating was done with same parameters
- Both cavities underwent 3h@300°C ...

• ... but in different furnaces! $\langle z \rangle$ is 642nm vs. 773nm

[Wenskat, M., et al SRF2023 TUIBA02.] [Wenskat, M., et al Supercond. Sci. Technol. 36 (2023) 015010 (11pp).]

- 1DE18 and 1DE10 performed similar before and after coating
- Coating was done with same parameters
- Both cavities underwent 3h@300°C ...

- ... but in different furnaces! $\langle z \rangle$ is 642nm vs. 773nm
- Since both cavities are coated, no Nb-oxide regrowth

[Wenskat, M., et al SRF2023 TUIBA02.] [Wenskat, M., et al Supercond. Sci. Technol. 36 (2023) 015010 (11pp).]

- 1DE18 and 1DE10 performed similar before and after coating
- Coating was done with same parameters
- Both cavities underwent 3h@300°C ...

- ... but in different furnaces! $\langle z \rangle$ is 642nm vs. 773nm
- Since both cavities are coated, no Nb-oxide regrowth
- Annealed 1DE10 a second time to diffuse more O away from SF w/o source on top

[Wenskat, M., et al SRF2023 TUIBA02.] [Wenskat, M., et al Supercond. Sci. Technol. 36 (2023) 015010 (11pp).]

- 1DE18 and 1DE10 performed similar before and after coating
- Coating was done with same parameters
- Both cavities underwent 3h@300°C ...

- Since both cavities are coated, no Nb-oxide regrowth
- Annealed 1DE10 a second time to diffuse more O away from SF w/o source on top

 \rightarrow Q₀ improved

[Wenskat, M., et al SRF2023 TUIBA02.] [Wenskat, M., et al Supercond. Sci. Technol. 36 (2023) 015010 (11pp).]

High thermal budget

High thermal budget → **HFQS reappears**

High thermal budget → **HFQS reappears**

Cavity	Treatment	Δf _{tot} /kHz	Δf _{dip} /kHz
1DE19	4.5h @ 335°C	11.7	1.1
1AC02	3.25h @ 335°C	12.3	1.4
1RI04	3h @ 250°C	18.4	0.9
1DE12	3h @350°C	8.3	0.52

High thermal budget → **HFQS reappears**

- Diffuse O out of RF layer
 - \rightarrow HFQS reappears and Δf_{tot} / Δf_{dip} decreases again

Cavity	Treatment	Δf _{tot} /kHz	Δf _{dip} /kHz
1DE19	4.5h @ 335°C	11.7	1.1
1AC02	3.25h @ 335°C	12.3	1.4
1RI04	3h @ 250°C	18.4	0.9
1DE12	3h @350°C	8.3	0.52

Is there an optimal O-concentration?

• Too high NSF c_o is not good for Q_o (1DE7 / 1DE10)

- Too high NSF c_o is not good for Q_o (1DE7 / 1DE10)
- Too low NSF c₀ causes HFQS again (1DE12 / 800°C reset)

- Too high NSF c_o is not good for Q_o (1DE7 / 1DE10)
- Too low NSF c_O causes HFQS again (1DE12 / 800°C reset)
- Is there a sweet spot?

- Too high NSF c_0 is not good for Q_0 (1DE7 / 1DE10)
- Too low NSF c_o causes HFQS again (1DE12 / 800°C reset)
- Is there a sweet spot?
- Need a substitute: assuming Δf_{tot} depends on c_0 ...

- Too high NSF c_0 is not good for Q_0 (1DE7 / 1DE10)
- Too low NSF c_o causes HFQS again (1DE12 / 800°C reset)
- Is there a sweet spot?
- Need a substitute: assuming Δf_{tot} depends on c_0 ...
- ... look for correlation between Q_0 and Δf_{tot} $Q_{0,max}$ @ 2K $\Delta f = f(7K) f(T > T_c)$

- Too high NSF c_o is not good for Q_o (1DE7 / 1DE10)
- Too low NSF c_o causes HFQS again (1DE12 / 800°C reset)
- Is there a sweet spot?
- Need a substitute: assuming Δf_{tot} depends on c_0 ...
- ... look for correlation between Q_0 and Δf_{tot} $Q_{0,max}$ @ 2K $\Delta f = f(7K) f(T>T_c)$

- Too high c_o near the surface is not good
 - 18xHPR before midT of 1DE7
 - 1xmidT vs. 2xmidT of 1DE10

- Too high c_o near the surface is not good
 - 18xHPR before midT of 1DE7
 - 1xmidT vs. 2xmidT of 1DE10
- Too low c_O leads to HFQS again
 - 1DE12 or every 800°C reset

- Too high c_o near the surface is not good
 - 18xHPR before midT of 1DE7
 - 1xmidT vs. 2xmidT of 1DE10
- Too low c_o leads to HFQS again
 - 1DE12 or every 800°C reset
- Optimal recipe depends on furnace "thermal budget"
 - 1DE10 vs. 1DE18

- Too high c_o near the surface is not good
 - 18xHPR before midT of 1DE7
 - 1xmidT vs. 2xmidT of 1DE10
- Too low c_O leads to HFQS again
 - 1DE12 or every 800°C reset
- Optimal recipe depends on furnace "thermal budget"
 - 1DE10 vs. 1DE18
- Sweet spot for Q_0 seems to exist right amount of disorder?
 - continue investigation & model building (Δf_{tot} vs. Δf_{dip} , E_{acc} , grain mapping)

Thanks...

- to **DESY** for the cavity measurements
- to **you** for listening

Questions?

Back Up

Correlation with thermal budget?

Assumed Δf is depends c_0 ... and we know that NSF c_0 goes down with larger thermal budget / larger $\langle z \rangle$... some correlation of Q_0 with $\langle z \rangle$ expected as well – yet weaker as Fick's law does not accompdate uneven GB diffusion / saturation effects

Current Redistribution

[Checchin, M. et al., Appl. Phys. Lett. 117, 032601 (2020)] [Pambianchi, M. et al., Phys. Rev. B 50, 13659]

Consequence: Currents shifted away from the surface where "lossy mechanism(s)" occur

Frequency shift is frequency dependent

- $Q_n = n \times 433MHz$
- Lower frequency $f_{op} \rightarrow lower \Delta f_{tot}$
- That is because Γ is frequency dependent
- If the dip is caused by current redistribution $\rightarrow \Delta f_{dip}$ should depend on f_{op} as well

X-Ray Reflectivity (XRR)

Non-destructive method of analysis

Weak scattering cross-section --> large penetration depth

[Dissertation Uta Hejral, 2015]

101 on XRR: Information from the curve

