Tosca final meeting

Laser material processing of niobium for the optimisation of cavity resonators

Dirk Lützenkirchen-Hecht

Florian Brockner

8. April 2024

Bergische Universität Wuppertal

New Setup OOO Measurement OOOO Fraunhof OO

Inhalt •

1. Final experimental setup:

New optic, new GUI, new vacuum chamber

2. Investigation of the field emission:

Point measurements on a laser-polished fine grain sample

3. Laser polishing under nitrogen atmospheres:

Polishing of niobium foils at various nitrogen partial pressures

4. Polishing at Fraunhofer Institute:

Laser polishing of unpolished niobium samples

5. Summary and outlook

1/14

New Setup ● ○ Measurement ○ ○ Fraunhof ○ ○ ○

Final experimental setup

Nanosecond laser λ =355 nm, 532 nm, 1064 nm, τ <8ns

xy-Table Δx≈1μm, Δy≈70 nm

Variable optics
Beam expander, λ/4,
energy monitor,
motorised focus lens

Vacuum chamber UHV, gas supply, oil-free

Measurands pressure, reflected laser energy, optical images of the surface, electrical signals

New GUI

New laser software

- Control of the new pumping station (oil-free)
- Stepper motors are controlled via an Arduino so that the motor speeds can be changed
- → 30 % faster polishing speed, 10 min/mm, limit f=10Hz
- visualisation of the polished areas

New Setup ○○● Measurement ○○○○ Fraunhof ○○○○ Conclusion ○○

New vacuum chamber

Base of the vacuum chamber

Various sample holders so that solid samples and foils can be polished

Sample holders for foils

Field emission of fine grain sample

Inhalt O

- Last meeting: The result of laser polishing differs between different grains (coarse grain, 4 large grains with different (hkl))
- ⇒ Laser polishing of a fine grain sample pre-polished by BCP
 - Surfaces after BCP, $R_a \approx 24\,\mathrm{nm}$
 - Micro laser polishing:
 - $\lambda =$ 355 nm, au < 8 ns, Overlap > 95%
 - $P=1\cdot 10^{-6}\,\text{mbar}\Rightarrow \text{old vacuum chamber with rotary vane pump}$

Differences between the grains + carbon-containing particles (problem oil of the pump)

New Setup OOO Measurement O●OO Fraunhof OOOO

Field emission of fine grain sample

- 25 measurements, error of E < 10 %, 12 measurements E > 300 MV/m, $E_{max} = 511 \, MV/m$
- No clear correlation between emission field strength (E) and surface structures
- \Rightarrow Surface scans with smaller tungsten tips (current d \approx 250 μ m) are necessary

Inhalt O

Laser polishing under a nitrogen atmosphere

- Polishing niobium foils (thickness 25 μm and 50 $\mu m)$ at different nitrogen pressures
- Polished spot at $5 \cdot 10^{-3} \, \text{mbar} \leq P \leq 1 \cdot 10^{-6}$
- Polished surfaces from 1 mm² at 1 \cdot 10 $^{-7}$ mbar, 5 \cdot 10 $^{-4}$ mbar and 5 \cdot 10 $^{-3}$ mbar
- \Rightarrow EDX and SEM analyze

7/14

BERGISCHE

Laser polishing under a nitrogen atmosphere

- Polishing niobium foils (thickness 25 μm and 50 μm) at different nitrogen pressures
- Polished spot at $5 \cdot 10^{-3}$ mbar $< P < 1 \cdot 10^{-6}$
- Polished surfaces from 1 mm² at $1 \cdot 10^{-7}$ mbar, $5 \cdot 10^{-4}$ mbar and $5 \cdot 10^{-3} \, \text{mbar}$
- EDX and SEM analyze

- Increased modification of the surface at higher pressures
- Low pressure ⇒ pressure change as a result of the LP $\Delta P \approx 4 \cdot 10^{-6} \, \text{mbar}$
- Change in the spatial distribution of oxygen and carbon

Laser polishing under a nitrogen atmosphere

- Polishing niobium foils (thickness 25 μm and 50 μm) at different nitrogen pressures
- Polished spot at $5 \cdot 10^{-3}$ mbar $< P < 1 \cdot 10^{-6}$
- Polished surfaces from 1 mm² at $1 \cdot 10^{-7}$ mbar, $5 \cdot 10^{-4}$ mbar and $5 \cdot 10^{-3} \, \text{mbar}$
- ⇒ EDX and SEM analyze

· Increased modification of the surface at higher pressures

Fraunhof 0000

- Low pressure ⇒ pressure change as a result of the LP $\Delta P \approx 4 \cdot 10^{-6} \, \mathrm{mhar}$
- Change in the spatial distribution of oxygen and carbon

Laser polishing under a nitrogen atmosphere

- Polishing niobium foils (thickness 25 μm and 50 μm) at different nitrogen pressures
- Polished spot at $5 \cdot 10^{-3}$ mbar $< P < 1 \cdot 10^{-6}$
- Polished surfaces from 1 mm² at $1 \cdot 10^{-7}$ mbar, $5 \cdot 10^{-4}$ mbar and $5 \cdot 10^{-3} \, \text{mbar}$
- ⇒ EDX and SEM analyze

- Increased modification of the surface at higher pressures
- Low pressure ⇒ pressure change as a result of the LP $\Delta P \approx 4 \cdot 10^{-6} \, \mathrm{mbar}$
- Change in the spatial distribution of oxygen and carbon

New Setup ○○○ Measurement ○○○●

BERGISCHE UNIVERSITÄT

Laser polishing under a nitrogen atmosphere

Areal laser polishing ((1x1) mm²) of 50 µm and 25 µm thick films at various pressures

New Setup ○○○ Fraunhof ●○○○ Fraunhof ●○○○

Measurements in cooperation with the Fraunhofer Institute (ILT)

- Limits of our experimental setup
 - Nanosecond laser only enables laser polishing of chemically pre-polished samples
 - Very low polishing speed due to the pulse repetition rate of 10 Hz
- ? Is the concept of laser polishing scalable for the production of resonators (\approx m²)?
- ? Can chemical pre-polishing be dispensed with?
- \Rightarrow Polishing of unpolished Nb sheets at the Frauenhofer Institute for Laser Technology

- Polish under argon gas with O₂ <100 ppm
- 3-axis cnc + galvanometer scanner switch between cw and pulse laser
- Macropolishing with cw-laser

•
$$P_L = (80-450)\,W,\, d_L =$$
 (250, 375, 500) $\mu m,\, d_y =$ (50, 75, 100) $\mu m,\, v_s =$ (25, 50, 100) $m m/s,\, \lambda =$ 1080 $n m,\, n=1,2,4$

- Macropolishing + Micropolishing with pulsed-laser
 - $P_L = (40-100)$ W, step 10 W, $d_L = 280\,\mu\text{m}$, $d_y = 30\,\mu\text{m}$, $v_s = 1000\,\text{mm/s}$, $\lambda = 1064\,\text{nm}$, $\tau = (120,400)\,\text{ns}$, $f=20\,\text{kHz}$

Inhalt O

Measurements in cooperation with the Fraunhofer Institute (ILT)

10⁻¹ initial state

P_L=240 W, n=2

P_L=80 W

101

local wavelength $\lambda / \mu m$

100

Initial condition of the Nb sheet

- Fine grain: (85.25 86.8) grain per mm²
- R_a=(0.97-1.43) μm

Result:

Combination of macro and micropolishing significantly reduces the roughness of the samples

BUT:

103

Closer look: OP + PSDF + 2d-FFT

P₁=240W, n=2 + P₁=80W

Micropolishing with different P_L higher P_L, lower R_q BUT:

More pronounced periodic structures as a result of laser polishing

102

New Setup OOO Measurement OOOO Fraunhof OO●O

XRD measurment on laser polished sample

- Surfaces examined with the XRD: first macropolished, then micropolished with different laser powers (P_L)
- XRD measurements to investigate the microscopic stresses
 - ⇒ [400] Peak shifts at maximum as a result of the stresses
- Macro LP: Generation of thermal stress even macroscopic deformations of the sample are visible
- Micro LP: The higher the P_L, the smaller the shift of the [400] peak
- ⇒ Laser micropolishing reduces the induced stresses

- Initial state: Deep holes in surface \Rightarrow LP cannot remove these holes
 - ⇒ Artifact of original structure remains
- ⇒ Limit of macro laser polishing
 - Laser polishing creates characteristic structures
 - Steps between the lines
 - ⇒ perhaps reducible by Gaussian profile instead of flat-top
 - Ripple: Artifact of the solidification front of the molten pool
 - Grain: Steps between the grains
 - Cracks: Cracks as a result of the temperature gradient (macro LP)
 - Carbonaceous particles on the laser polished surface + no change in oxygen content (polished in an argon inert gas atmosphere)
 - ⇒ Macro LP possible but many problems exist
 - ⇒ Goal-oriented: Combination of pre-polishing (e.g. BCP) and subsequent micro LP under vacuum

New Setup OOO Measurement OOOO Fraunhof OO

Conclusion

- Extensive optimization of the experimental setup (new GUI, new vacuum chamber, nitrogen supply ..)
- Fine grain sample:
 - Differences between the grains and between the grain boundaries
 - FESM: E_{max} = 511 MV/m, but some very low values ⇒ No assignment between values and surface texture
 - Two-dimensional scans with a finer tip
- Polishing of niobium foils under different nitrogen pressures ⇒ maximum pressure has an effect on the topography produced
 - \Rightarrow Presumably detection of nitrogen after laser polishing for $P(N_2) = 5 \cdot 10^{-3} \, \text{mbar}$
 - Measurements of laser-polished foils under nitrogen atmospheres at DESY, EXAFS
- · Cooperation with the Fraunhofer Institute
 - Macropolishing reduces the surface roughness of unpolished Nb sheet metal BUT: some problems
 - · Micropolishing further reduces roughness and thermal stresses

New Setup 000 Measurement 0000 Fraunhof 0000

Inhalt O

Questions?

Power spectral density function

- Power spectral density function
 - $P(\omega) = P(-\omega) = \int_{-\infty}^{\infty} R(\tau_{A}) \exp(-i\omega\tau_{A}) d\tau_{A}$.
 - \Rightarrow Peaks in sequence of periodic structures
 - ⇒ Recording the direction of the PSDF in relation to the periodic structures shifts the peak position
- Frequency-dependent R_q values

•
$$R_q^2 = \int_{k_{\min}}^{k_{\max}} PSDFdk$$

· 2d-Fourier transformation

•
$$F(k, l) = \sum_{n=0}^{N-1} \sum_{j=0}^{N-1} f(n, j) \exp \left[-2\pi i \left(\frac{kn + lj}{N} \right) \right]$$

 \Rightarrow Alignment of periodic structures is recognizable

- Macro laser polishing
 - Polishing with a CW laser ⇒ Generation of a continuous melt
- · Micro laser polishing
 - Surface cools down completely between each pulse \Rightarrow no coherent melt is created
- Parameter
 - Laser: λ , pulse duration (τ) , f, continuous wave (cw) or pulse laser
 - · Sample: roughness, grain size and orientation
 - Process parameter: hatch distance (dy), scanning velocity (vs), pressure, beam diamter (dL) number of passes (n), process gas (Argon, vacuum)

Optimization of the experimental setup

- New laser beam path
 - Polarization filter, 532 nm / 1064 nm beam splitter, measurement of reflected laser radiation

- a Simulated Nb diffractrogram with the expected intensity of the peaks
- b Approximation of the [400] peaks by a linear combination of: 2 Voigt functions and a straight line
- Diffractograms of two untreated Nb sheets
- d Diffractogram of two laser-polished surfaces