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Outline

·Relevant properties of CFTs any d

· their trace or Weyl or conformal anomalies d
=2n

· type A

· type B

· Anomaly matching · What is matched? d
=4

· why?

· Simple illustrative example: free massless scalar d
=4



NB: Iwill notgive any references. They can be found

in the paper.

ButIshould mention interesting andrelevant

work for our analysis by Niarchos, Papageorgakis,
/Pini) & Pomoni

which prompted us to reconsider the problem of Weyl
anomaly matching.

For a very nice andthorough discussion ofmany aspects
ofWeylanomalies I also recommend Baume, Karon-zur,

Rattazzi & Vitale



Conformal Field Theories (d) 2)

classical:action invariantunder conformal transformations

So(d,2) invariance oflight-come in Mink

Poincare x-Mx +a

+elilations x-xxM
scale transf

x +12be
Aspecial conf transf. *

1+2bx +x2)2

Due to the scale symmetry, CFTs do not have an intrinsic length/energymass scale.

simplestexample:free massless scalar in any d



Auseful connection:

sowf. ine. In Mink Dru < Weyl in. in carved space gar

c.y. free scalar
↓- 2

3=-S(4,g) =(d(5(q42n424 +3R(g)b") 4 (d -17

in special dims. Potential is also

is invariantunder souf. iww. 2.5.4*in d=1

En e2Gr 5 =5x) Weyl parameter

Weyl tranf.
4 -xe156 1-I cow) weightof d

in addition to inunder differs gre=In totte
50 =tr2k



Those special combinationsof Weys- differ transf, which
leave the Minkowski metric invariants

Er =a +wvx +xx4 +x2b" - 2bxx
&EntduG+284m =0 5 =

- x +2b.x

generate souf. transf. ofd (or any other primary field)
X

tensors"under corf group

56 =t(x2 +1)4 +br(x22n - 2xx0 - 21x)4 +Poincare



Once we have the coupling to go we can dative a symmetric
enorgy-momentum tensor via

Fr = - IS
IS

with the following on-shell properties ⑧ =0

· "Tu =0 diff inofS

⑧ TM =0 Weyl in of 5

These properties suffice to show that the Noether currents
-

for cont. Symm. are conserved.



Comments

· All interesting classical conf. inn field theories can be coupled
in a ways inc. way to gravity
in particular those which leadupon quantizationto a

unitary FT

· Here the metric is not dynamical, it rather acts as a

source for the energy-momentum tensor.

so much for classical cuts...



Conformal Field Theories (d) 2)

quantum:

Symmetrics--restrictions on garal form ofcorrelation
functions oflocal operators

conservation laws -1Ward identities ofcorrectators

involving the symmetry currents

of course a central issue are anomalies, here ofcowf.transfs,
As theyare global (space-timesymmetries, they are no problem
butrather ablessing. (exception:string theory



In the following we will assume thatthe QFT has
among its local ops

an energy - momentum tensor. Tu

If theQFTarises from a classical IT upon quantization,
we couple it to an external metric and define

eWIgS =(DyiST,g)

W(g):generating functional for connectedcorrelation

functions ofTru

2.2. XT -WIg)....



or

w =in)dd Es bx48% expand around grow You

- t) dxdydzEskis,z) b)h*() t...

where

⑨ h* =ga - yu

8 ↳so Kis)=YInklTsolyKy etc. for (...)

wers of I-product

i.e. W sums up the correlation funtions ofTwo
and as such is defined for any QFTwith local Tru.



If we are interested in correlation functions ofother operators Os
we introduce sources] and obtain

2 wisis)=/D4 e-S4.8is)

In the absence ofanomalies W has the same symmetrics as

the classical action.

For conformal -> differ -Weyl this implies

JoW = 0under degen =25gr

%] =(A- d) 0] drs = -15s
s.t. (55] Os inv



This leads to Ward identities for theT's:

e.g. W(g.3) =I(dx dy XO,()8s(y)) 3a)J(y)

- i (dxdydeXTurkOs()0x1z)) h*A)3(x)3(t)+...

· differ: 3] =G&n] Sh = -0" -der +0(h)

·deW =
0 = &YI(x,y,z) =didk-y)r(x,z) +0d(x-z)r(x,x)

-..

· Weyl: 83 =(1 - d10],8(*= - 25gr t0(h)

8W =0 =ye T(x,y,z) =(d - 1)(5(x-y) +5(x-)) +4(y,z)

They relate to[w-1)-pt fetus.



However itis well known (cf. Buff review) thatthe Weyl and differ
Ward identities are notalways satified butare anomalous.

More specifically:

⑧@ The anomaly is an unavoidable clash between differ a West.
Butone of the two W.I.S can always be imposed. Which one is
upto us. One usually chooses differ to be preserved.

· whether the other oneis broken depends on d andA

for even a there is always an anomaly in XTr. ... so)

· the anomaly is local, i.e. the Wins are broken by pure
contact forms

~Jk-y)0(-z) ...



Anomalies are constrained by the Wess-Zumino consistency condition:

50W=SESA A local functional of sources

[d,daW =0

=>82) -) =0

modulo (iA =r(55 local

(w.z. cohomology problem



I will now be more specific and restrict to

d =4,1 =2 i.e. we have an operator O
ofdimension 2 in the CFT

↳
with sore 3.55] =-20]

Solutions to W.E.

%W(8,x =((r) =3 +x - aEn)
whore:

· i, c, a constants a,c,aWeyl anomaly coefficients

charactsistic ofa given CFT



%W(8,x =((r) =3 +x - aEn) *

· Gregor (Must square ofWeyl tensor

En =Rego BNS_4R"Rm+R" topological) tular density

Beser
Weyl anomalies come in two types:Type A& Type B & Schwimmer

The first two in are Type B, the last one is Type A.

In which ways do they differ?



Type Avs Type B

· Type B: - originate from a log-divergence in correlation functs.

- WEis trivially satisfied, i.e. anomaly is itself Weyl in.

- does notvanish for aconst.
- Anomaly coefficientrelated to normalization of a 2pt.fat.

· Type A: - do notoriginate from divergence but from of structure
in dim. reg.

=Wenow-trivially satisfied,i.e. anomaly itselfis not
Weyl inc

->for 5=costitvanishesin top. trivial bardgral.
Entak

In any evend, there is always one Type A(Ey) buta growing (with d) #A type B's



Comment:

Recently there has been a lotofactivity, also by mathematicians,
on chiral (it Hooft) anomalies(including discrete, higher form.... (
It is notclear how much ofthis applies to Weys anomalies.

inedifference being thatin Euclidean space chiral anomalies
arc phases in the generating functional, while web anomalies are real.

Is there a descent procedure for Weyl anomalies?(Holography?
our treatmentofWeyl anomalies can also be appliedto continuous chiral

anomalies.

we will now turn to anomaly matching...



Ahomely matching
general remarks:

·well known for chiral anomalies ('t Hoofth
useful tool to constrain the IR-theory to which

a given 4V-theory flows.

· anomaly matching for Type AWegl anomaly (in the sense
describedbelow was proven some time ago...

· ... and was an essential ingredientin the Komargodski-Schwimmer
proof ofthe a-theorem

· matching oftype B Weyl anomalies remained an open question

butwe need to explain firstwhat we mean by matching.



This bestillustrated by the example ofthe anomaly in

xitq)O(n) Olb) =In (9,b, hn)
dim 8= 2

q =k,+kc

We recall the Wit., written in momentum space

differ quin!"(,kb) =Gy 5" (k) + hert" (?)

Weyl yari" (q,k() =+(k) + Miki) +2

where we have included

the anomaly

I is the normalization of the 2pt function:

↑ (H =x0(k) O(-K)) = - alog K



We now expand I in invariant amplitudes AlqiRE),...

() T(9,k,k) =Ayn + Bqf + C(qrtff) +B r q =k, +k

r =k, - ke

dimA =0 ~log? dep.
dim B,4D =-2 finite, scheme indep

Insertin W.IS=$ 3ef5. 2 from diff W.I.+ from Weyl W.I.

They can be used to arrive at

I anomalous relation between finite amplitudes:

- 3q2B - 2qr +r2 B =25



This is the central ofand it we rewrite itin the general form...

(x) SiE +Ez +SzE =c Si =(99kk2

c =cost.

Eils,S,Syh dim-2 amplitudes

... itgeneralizes to other cases.

here E =

- 3B - D E =2(D -) Ez =2(D +c)

e
.

Now comes a crucial remark:howwhere in the derivation of
the WIS and therefore of As the conformal invariance ofthe
vacuum was used. Only Poincarein was used.



Therefore let us assume there exists another Poincare inv. Vacuum s.t.

Yol010) =w =O dim 0 =1 > 0

[v] =mass

ie SSB conf.sym ->Poincare sym.

with the usual consequences, e.g. MasslessGoldstone boson:dilation.

↓ massive statesmu
But mostimportantly for us:

⑤ all operatorialrelations are unmodified e.g. T =
0

· the Word identitie still hold



In particular

S, EY +SzE +SE,* =
c

⑧ E,B(S,SwSsIW2) they are quite diffrentfrom the

amplitudes in unbroken phase

8. B =const. the solutions to WEconsistency
lindep. ofW.) are as before

But

B?
C =C

This is the issue ofWeyl anomaly matching



Matching now followsfrom the following general fact about
amplitudesin a SSB phase

/im
Algis?...(

=1
x -x0 A*(qi,g?....(

As the kinematical invariants are sent to as the signs of
SSB 10.8. M222) disappear.

This a consequence of the factthatthe OPEs are unchanged
-D UV-structure ofcorrelators remains the same

/while for finite values ofthe si they are quite different,
as the spectrum is now massive, etc.)



Therefore

lim (XS2iAss)+ XS;Eals,, XSzitsy) +S Egls,,XSa,Xsy) C
3

- =1
1- XS, E,*(15,,X52iXss) + XSEs, XSaiss) +S,Es, XsaAs) cB

i.e.

B
=C

This establishes Weyl anomal matching:

The lbs. ofthe anomalous WIs evaluate to the

same constantin the two phases for any value ofthe breaking scale.



i.e. for a flow triggered by SixB

CFTur all anomaly coofficients defined
via Weyl WI are const.

*
CFTIR incl. dilator



Comment:

The analysis ofthe anomaly in the correlator

XTm Tso Tap]

is considerably more involved 1136 inv.amplitudes ofdims. 4.2, 0, -2)

Nevertheless one finds WIs involving only dim-s amplitudes

SiEi +scEz + SEs =a Ei.E:linear combs
of the 27 dim-2

SiE +Ez +SzE =c
amplitudes

This guarantees the matching ofthe two anomaly coefficients



We can also use our master of

SiE +Ez +SzE =c ()

to derive a sam rule for each of the invariantamplitudes E::
· As the EI have dimension-2, they satisfy unsubtracted disp.rels.

E: (s;S;,sk) =(dx, Im,E;ksjisa Sj.Skfixed
X - Si

· larges behaviourofadiminvamplitude
is a CFT is generice

for any ofthe si



However if itsatisfies A), it also satisfies SiE +Ez +SgE =c

SiImiE; +SjImiEj +SIM, En =0 ijEk

which implies

ImE [logs,P
()
=D Est +O((logsil")

and from the disparion relation we obtain the sum rules
E: (siS],sk) =(dx, ImEiks

- (ds: Im, E; (Si,5j,Sn) = for each Ei in (A)

Sj,Skfixed



An identical analysis in the broken phase gives

- (ds: Im,E(Sij, s) =cB =c for each E
P

use matching

These sum rules are validfor all OFWXco

andexistfor type Aand type B Weylanomalies. They are

a consequence ofthe Ward identities.



All features ofthe analysis presented so far can be realizedon
a simple for model where all features can be explicitly verified

For the unbroken phase, consider a

free massless scalar & in d=4 with Es=2 =d

S =I(dY(-4X4 +jRd)

Tr =22nd - yr dds4+ (9nB-dd)6

&"Tm =0 =TY on-shell i6= 0



4
- -> k

<Tn(-f)4(h) @(k)) q - - -T

qr
--?k

log divergent, butdim-2 amplitudes can be unambiguously
identified by their tensor structure

recall the decomposition

i(f,k,k) =Aym + Bqf + C(qrtff) +B r

and

E =

- 3B - D E =2b - c) Ez =2(D +c)



Indeed one finds thattheyare indup ofthe RG-scale

and they satisf

kx| Ei - consistentwith E:
SiDD

in the normalizations chosen

for the calculation

One can also compute, using Cutkosky rules, org.

ImguE, 19bk

and verifythe sum rule

Ax -!dq" ImqE,(qibik?) =4
Comment:() & (x) also hold for a massive conf.coupled scalar



For the broken phase we consider two massless scalars die
coupled through a marginal interaction, i.e.

L =2244 +424- 82 inflatspace

In both phases we will eventually take 8- 0 to preserve conformality

Breaking:44) =2

To compute in the broken vacuum we shift in the field 4

Y =v+

andcalculate with the usual Fayaman rules for E.



In the broken phase the system consists of

· massive field o M2 =2g0

· massless Goldstone boson is related to dilator

with linear coupling in energy-momentum tensor

Tu = W (YB-&rd) Y t...

and cubic coupling

~ 2gw



We now consider the limit

g-D0, v-D, M
=2go2 fixed

Inthis limit only two diagrams contribute to Xunk)

Tv
- 2gw

·

4

I Tu o, massive dBre8

Nu

I
A

42 ·pr

·

One checks thatfor generic is both diagrams are needed

to reproduce the anomaly coefficient.

⑤ However the firstdiagram does notcontribute to the sum rules which

is completely saturated by the massive triangle.



Two interesting limits:

· R* =0:the first, the dilator diagram vanishes

->back to unbroken case

& Mc =0 = = the contribution of2" diagram to
dim-2

amplitudesvanishes

-> the dilator diagram has a finite limit ~
I

4....-- -]
E =G1E =E =0 effective dilator

vortexin la action
i.e. itsaturates the anomalous W.I. by itself.

note: anomaly matching -D constraints on
dilator couplings



One could also discuss the XTTgoTap) for this

toy model in the broken phase.
This is much more involved and will not be done here.

Instead...



Summary

By writing the anomalousWIin terms

of scheme indep amplitudes (dim-2) one

obtains a definition for the anomaly coefficients
which is constantalong RC-flows triggered
by SSB.


