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Review: Some Swampland
Conjectures



The Distance Conjecture

Massless scalar fields parametrize a “moduli space” of
vacua.

At large distances in moduli space, a tower of particles
becomes light exponentially quickly with increasing
distance:

m(¢) ~ e

Ooguri, Vafa ‘06



The Sharpened Distance Conjecture

In a given infinite-distance limit, at least one tower
satisfies the Distance Conjecture with a coefficient a that
satisfies

a>1/vVd—2

Etheredge, Heidenreich, Kaya, Qiu, TR 22



The Emergent String Conjecture

Any infinite-distance limit in moduli space 1s either a
decompactification limit (accompanied by a tower of
Kaluza-Klein modes) or an emergent string limit
(accompanied by a tower of string oscillator modes)

In known examples, decompactification limits strictly satisfy the
Sharpened Distance Conjecture (a > 1/4/d — 2), emergent string

limits saturate it (& = 1/A/d — 2)

Lee, Lerche, Weigand ‘19



Scalar Weak Gravity Conjecture
(SWGC)

Given a (canonically normalized) massless scalar field,
there exists a particle of mass m that satisfies

—6¢logm2 1/\/d—2

Etheredge, Heidenreich, Kaya, Qiu, TR 22
building on Palti 17, Calderon-Infante, Uranga, Valenzuela ‘20



SWGC: A Reformulation

Given a collection of canonically normalized scalar fields
¢; and a particle of mass m, define the scalar charge-to-
mass vector

Ci = —04, logm

(O

b2 rticle
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SWGC &

Convex hull
condition
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Example: I1IB 1n 9d

Towers appearing
at infinite distance!
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Etheredge ‘23



Example: I1IB 1n 9d
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Classification of Infinite-Distance
Polytopes



Assumptions

* The main ingredient that goes into this taxonomy 1s the
Emergent String Conjecture.

* The taxonomy applies only 1n “generic” asymptotic
limits of moduli space, which means that there are not
multiple towers becoming light at the same exponential
rate.

e Soon, I will show you an example where this
classification does not apply in certain limits or in the
interior of moduli space.



Classification of Vertices

* Fundamental string oscillation modes:

Mg~ exp(~6/VT=2) = || = Z=

* KK modes for n-dimensional decompactification:

n-+d—2 AR n+d—2
mKKNeXp(_\/n(dQ) )= C‘_\/n(d—z)

That’s it!

Etheredge, Heidenreich, Kaya, Qiu, TR 22



Classification of Edges

* Two possibilities: (a) KK modes and KK modes, (b)
KK modes and string oscillation modes
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Valenzuela, to appear



Classification of Edges

» Two possibilities: (a) KK modes and KK modes, (b)
KK modes and string oscillation modes
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Classification of Edges

« Example: IIB 1n 9d

Etheredge, Heidenreich, TR, Ruiz,
Valenzuela, to appear



Classification of Facets

 Facets of the polytope represent weakly-coupled
phases of the theory

* They fall into two categories:

* String theory phases (one stringy vertex, rest KK
vertices)

* Geometric phases (no stringy vertices, all KK
vertices)

* These two types of phases are distinguished by the
nature of the species scale (string scale vs. higher-
dimensional Planck scale, respectively)

e Stmilar quantization conditions apply to such facets



Sliding

A non-example: sliding in SO(32) heterotic string theory on a circle:

Polytope rules
violated at generic
point in Type I
phases (green)

But—in generi
asymptotic —
regions of moduli o
space, rules are
satisfied (yellow,
blue)!

Etheredge, Heidenreich, McNamara, TR, Ruiz, Valenzuela *23



Evidence from Supergravity



Aside: Strong Forms of the Weak
Gravity Conjecture

The Tower WGC 1implies that any time a gauge
coupling g vanishes in some infinite-distance limit, there
1s a tower of particles beginning at the mass scale

The WGC for strings implies that any time a 2-form
gauge coupling g vanishes 1in some infinite-distance
limait, there 1s a tower of string oscillator modes
beginning at the mass scale
(d—2)/4
m ™~ \/§Mpl,d Arkani-Hamed, Motl, Nicolis, Vafa *06

Heidenreich, Reece, TR ’15, ’16,
Andriolo, Junghans, Noumi, Shiu *18



Bottom-Up Evidence:
Minimal Supergravity ind = 3

 Supergravity in 5d controlled largely by cubic
prepotential: |

F — EC[JKYIYJYK

« Here, Y are homogenous coordinates on vector
multiplet moduli space, identified under simultaneous
rescaling Y/ ~ AY!

 Consider “straight-line” path in the space of these
homogenous coordinates:

Y'=Y{] +sY!,s€]0,1]



Bottom-Up Evidence:
Minimal Supergravity ind = 3

 Assume s = 0 1s at infinite distance = two cases to consider:

Case l: F ~ s
= gauge couplings scale as

1
8min ~ eXp(———=p), 1/gmax ~ exp(———=p)

% %
Tower WGC =
MKK S 8min ™ eXp(—ip) ~ exp(— Ep)
~ omin \/g d _ 2
WGC for strings =
1 1

Mstring ~ 4/ Tstring S 1/y/8max ~ eXP(—ﬁP) ~ exp(— \/(d a2 p)

Expected scaling for decompactification limit!

- d—1 - 1
— - . . _ Etheredge, Heidenreich,
HCKK H d—9 . CKK Cstrlng d— 9 Kaya, Qiu, TR "2



Bottom-Up Evidence:
Minimal Supergravity ind = 3
e Assume s = 0 1s at infinite distance = two cases to consider:

Case 2: F ~ s°
= gauge couplings scale as

1 2
8min ™~ exp(_ﬁd))a l/gmax ~ 6Xp(——¢))

V3
Tower WGC =>

mgs 8min ~ €Xp(——¢) ~ exp(—

1
V3 d-2

¢)
WGC for strings =

1 1
Mgtring ~ 1/ Tstring S 1/4/8max ~ exp(———=¢) ~ exp(— P)
string string max \/5 \/ﬁ
Expected scaling for emergent string limit!

1 - -
’ Cstring ) CKK - = Etheredge, Heidenreich,
d— 2 d— 2 Kaya, Qiu, TR *22

[|Cstring| =



Bottom-Up Evidence:
Minimal Supergravity in d > 3

 Similar results apply to tensor multiplet moduli space in d = 6, moduli
space ind > 7

* In all cases, find (assuming tower/string WGC) that infinite distance are
characterized by either:

* Charged tensionless strings with

1
Mstring ~ / Tstring exp(— — P)

» Towers of charged particles and charged strings

d—1 1

MKK S eXp(—/——=5P)> Mgying S exp(= ).

KK d—2 string \/(d—l)(d—Z) ]l’
D
g\

* Some intermediate regime between the two TR °23 —

W A
= string

« Fits perfectly with the classification of vertices and angles



Applications



Sharpened Distance Conjecture/SWGC

e String theory facet:
1

d— 2

min [|C|] = |[Cstring|| =

 Geometric facet:

winl =601l = [ Dy + D=+ 2
1
d— 2
 Sharpened Distance Conjecture, SWGC satisfied!

>




Species Scale Relations

* Any vertex on a stringy facet satisfies
S 1
Cfu ) Cstr — m

* For any point on the facet, can write

522377;5&7 inzl, x; > 0.

. 1
= (G = 7
(- Gr = 7
* With this, can prove previously discussed relations:
. o1 . 1 LS 1
||C||)\QG(C) - d—_9 — )\QG(C) S m Cmax . )\QG — m

Calderon-Infante, Castellaano,
Herraez, Ibanez ’23

¢ Similar argument fOI' ge()metric faC et van de Heisteeg, Vafa, Weisner ’23

Castellano, Ruiz, Valenzuela ‘23



Classification of 2d Slices

* Assume D = d + k < 11 for every
decompactification limits

» Assume D < 10 for decompactification limits
adjacent to strings (no 11d strings)

= Finite list of possible 2d slices!



Classification of 2d Slices: 9d Results

Ind =9, only one option:

(:1, 1.20,1. C)G)

Same as maximal SUGRA!



Classification of 2d Slices: 8d Results

Ind = &, two options:




Classification of 2d Slices: 8d Results

Both are slices of the 8d maximal SUGRA polytope!




Classification of 2d Slices: 7d Results

In d — 7, two options:

o
|

(1,3,00,3,0¢,3) (1,2,2,1,00)



Classification of 2d Slices: 6d Results

In d = 6, eleven options!

O 7\
e ey O
\'J/" \ / { j \~- 4 4/ | ~—




Assessment

* Ind > 7, these are all orthogonal slices of the
maximal SUGRA polytope (could also be
realized by other theories)

 Have some results for n > 2 slices; see
forthcoming paper

» Answer for n = 11 — d seems to be unique

(except for d = 10): matches maximal
SUGRA!



Conclusions



Summary

* Used Emergent String Conjecture + other
assumptions to derive rules for the geometry of the
convex hull generated by the scalar charge-to-mass
vectors

» Sharpened Distance Conjecture, species scale
relations follow from these rules

 Used these results to classify convex hull
polytopes, found match with maximal SUGRA

» Results are quite general, but not completely
general (ignored sliding, etc.)



To Do

* Understand cases with sliding, interior of
moduli spaces

* Check 1n more sophisticated examples (esp. 4d,
5d)

* Prove the Emergent String Conjecture



Bonus: Persistence of the Pattern
in Sd Moduli Spaces



The Species Scale “Pattern™

 Earlier, I mentioned a remarkable pattern observed
by Castellano, Ruiz, and Valenzuela

yug ~ ﬁm ﬁAQG 1
Cmax ) AQG — . —
™ AQG d— 2

* This relation can be proven 1n generic asymptotic
limits, where our taxonomic rules apply

* However, 1n the context of 5d supergravity, a
version of it can be proven 1n full generality



5d supergravity

» Recall that 5d supergravity 1s controlled by a cubic
prepotential:

1
Jr — EC]JKYIYJYK

* The vector multiplet moduli space 1s the # = 1
slice

» Helpful to define:

f]:@]f .F[J:a[a]f'



Gauge and Scalar Couplings

* Gauge kinetic matrix 1s then
aryg =FrFy;—Fi1g

* Metric on moduli space is pullback to # =1
slice: |

Gij = i&u@'ylﬁjy‘]

* Satisfies an important 1dentity: Alim, Heidenreich, TR 21

| Ry 1
aIJ _ 59238iyfajyj 4+ gyny



BPS Bound 1n 5d

* BPS particles saturate the bound:
m(qr) > (27°)"°|qry”|

* BPS strings saturate the bound:

N 1 N
T(g") > o (2n%) O\ Fy



The Pattern

. Setting M = \/ 27T(g"), using identity, can prove that
for any BPS particle and BPS string,

ij oim 8st _ 1 B QIQI
m M, 3 (qxY®)(G"FL)

g

e If string and particle become light 1n asymptotic limit,
their Dirac pairing vanishes, ¢;§' = 0

» Setting Agg = M, we find the pattern:
ﬁm . 6/\@(} B 1

m AQG 3



Thank You



