Hilbert series for covariants and MFV or "why MFV SMEFT=SMEFT?"

DESY Theory Seminar - January 10th 2024

Pablo Quílez Lasanta - <u>pquilez@ucsd.edu</u> University of California San Diego (UCSD) Based on 2312.13349 [hep-ph]

<u>"Hilbert series for covariants and their applications to MFV"</u>

in collaboration with B. Grinstein, X. Lu and L. Merlo

The flavor puzzle

Standard Model of Elementary Particles

Why are there three families?

 \triangleright

Based on 2312.13349

The flavor puzzle

Why are there three families?

 \triangleright

Why do fermions have so different masses?

The flavor puzzle

Why are there three families?

 \triangleright

- Why do fermions have so different masses?
- Why is quark mixing so small while lepton mixing is large?

New Physics Flavor puzzle

Hatched bars: MFV Darker colors: midterm prospects

 \mathcal{O}_n

[European Strategy for Particle Physics, 19] Aloni+Dery+Gavela+Nir Based on **2312.13349**

Quark flavor symmetry

[Georgi+ Chivukula]

 \rightarrow Classical global symmetry of the d=4 Lagrangian for $Y_{u,d} \longrightarrow 0$

$$G_F = U(3)_{Q_L} \times U(3)_{u_R} \times U(3)_{d_R}$$

$$Q_L \longrightarrow U_{Q_L} Q_L; \qquad d_R \longrightarrow U_{d_R} d_R; \qquad u_R \longrightarrow U_{u_R} u_R.$$

Quark flavor symmetry

[Georgi+ Chivukula]

 \rightarrow Classical global symmetry of the d=4 Lagrangian for $Y_{u,d} \longrightarrow 0$

$$G_F = U(3)_{Q_L} \times U(3)_{u_R} \times U(3)_{d_R}$$

$$Q_L \longrightarrow U_{Q_L}Q_L; \qquad \qquad d_R \longrightarrow U_{d_R}d_R; \qquad \qquad u_R \longrightarrow U_{u_R}u_R.$$

→ Broken by Yukawas:

$$\mathcal{L}_{\text{Yukawa}} = -\overline{Q}_L Y_u \widetilde{\Phi} u_R - \overline{Q}_L Y_d \Phi d_R + \text{ h.c.}$$

[Georgi+ S. Chivukula] [Hall, Randall] [D'Ambrosio+Isidori+Giudice+ Strumia] [Cirigliano+ Grinstein+Wise]

→ SM Yukawas are the only source of flavor violation both in SM and BSM

[Georgi+ S. Chivukula] [Hall, Randall] [D'Ambrosio+Isidori+Giudice+ Strumia] [Cirigliano+ Grinstein+Wise]

- \rightarrow SM Yukawas are the only source of flavor violation both in SM and BSM
- → SM Yukawas are promoted to spurions

$$Y_u \longrightarrow U_{Q_L} Y_u U_{u_R}^{\dagger} \quad Y_d \longrightarrow U_{Q_L} Y_u U_{d_R}^{\dagger}$$
$$Y_u \sim (\mathbf{3}, \mathbf{\overline{3}}, \mathbf{1}) \qquad Y_d \sim (\mathbf{3}, \mathbf{1}, \mathbf{\overline{3}})$$

[Georgi+ S. Chivukula] [Hall, Randall] [D'Ambrosio+Isidori+Giudice+ Strumia] [Cirigliano+ Grinstein+Wise]

- → SM Yukawas are the only source of flavor violation both in SM and BSM
- → SM Yukawas are promoted to spurions

$$Y_u \longrightarrow U_{Q_L} Y_u U_{u_R}^{\dagger} \quad Y_d \longrightarrow U_{Q_L} Y_u U_{d_R}^{\dagger}$$

$$Y_u \sim (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}) \qquad Y_d \sim (\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}})$$

MFV symmetry principle: All higher dimensional operators built from SM fields and the Yukawa spurions are formally invariant under the flavor group (and CP).

→ S
→ S

$$\frac{C_{pr}}{\Lambda^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_p\gamma^{\mu}q_r).$$

$$Y_u \sim (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}) \qquad Y_d \sim (\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}})$$

MFV symmetry principle: All higher dimensional operators built from SM fields and the Yukawa spurions are formally invariant under the flavor group (and CP). nd BSM

$$\rightarrow \mathbf{S}$$

$$\rightarrow \mathbf{S}$$

$$\xrightarrow{C_{pr}} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r}). \longrightarrow \frac{(Y_{u}Y_{u}^{\dagger})_{pr}}{\Lambda^{2}} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r}).$$

$$Y_u \sim (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}) \qquad Y_d \sim (\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}})$$

MFV symmetry principle: All higher dimensional operators built from SM fields and the Yukawa spurions are formally invariant under the flavor group (and CP).

→ Example: $\frac{C_{pr}}{\Lambda^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_p\gamma^{\mu}q_r) .$ $C \sim \mathbf{8} \oplus \mathbf{1} \qquad h_u \equiv Y_u Y_u^{\dagger} \qquad h_d \equiv Y_d Y_d^{\dagger}$

 $C = c_0 1 + c_1 h_u + c_2 h_d + c_3 h_u^2 + c_3 h_u h_d + c_4 h_d h_u + c_5 h_d^2 + \dots \quad (Y_u Y_u^{\dagger})^n?$

 \rightarrow Example:

$$C \sim \mathbf{8} \in \begin{bmatrix} \text{Usually } \mathbf{Y}_{u,d} \text{ are treated} \\ \text{as order parameters} \end{bmatrix}^{\cdot} h_d \equiv Y_d Y_d^{\dagger}$$

$$C = c_0 1 + c_1 h_u + c_2 h_d + c_3 h_u^2 + c_3 h_u h_d + c_4 h_d h_u + c_5 h_d^2 + \dots \quad (Y_u Y_u^{\dagger})^n ?$$

→ Example:

$$C\sim {f 8}\in egin{pmatrix} U {
m sually Y}_{{
m u,d}} {
m are treated} & \cdot & \cdot \ {
m as order parameters} & h_d\equiv Y_dY_d^\dagger \ \end{array}$$

$$C = c_0 1 + c_1 h_u + c_2 h_d + c_3 h_u^2 + c_3 h_u h_d + c_4 h_d h_u + c_5 h_d^2 + \dots \quad (Y_u Y_u^{\dagger})^n ?$$

$$\Rightarrow Why c_0 \sim c_1 \sim \cdots \sim c_i? \quad \text{Counterexample:} \frac{1}{4 \operatorname{Tr} \left[Y_u^{\dagger} Y_u\right]} \left(\bar{u}_R \gamma_{\mu} Y_u^{\dagger} Y_u u_R\right)^2$$

 \rightarrow Example:

$$C\sim {f 8}\in egin{array}{c|c} Usually Y_{u,d} \ {f are treated} \ {f are treated} \ {f h_d}\equiv \ h_d\equiv \ \end{array}$$

$$C = c_0 1 + c_1 h_u + c_2 h_d + c_3 h_u^2 + c_3 h_u h_d + c_4 h_d h_u + c_5 h_d^2 + \dots \quad (Y_u Y_u^{\dagger})^n ?$$

 $Y_d Y_d^{\dagger}$

$$\Rightarrow Why c_0 \sim c_1 \sim \cdots \sim c_i? \quad \text{Counterexample:} \frac{1}{4 \operatorname{Tr} \left[Y_u^{\dagger} Y_u\right]} \left(\bar{u}_R \gamma_{\mu} Y_u^{\dagger} Y_u u_R\right)^2$$

- ightarrow Top Yukawa $y_t \sim 1$
- → In 2HDM Y_d can also be large

- → Let's take MFV seriously
- \rightarrow Only symmetry principle, no extra assumptions

$$C = c_0 1 + c_1 h_u + c_2 h_d + c_3 h_u^2 + c_3 h_u h_d + c_4 h_d h_u + c_5 h_d^2 + \dots$$

- → Let's take MFV seriously
- \rightarrow Only symmetry principle, no extra assumptions

$$C = c_0 1 + c_1 h_u + c_2 h_d + c_3 h_u^2 + c_3 h_u h_d + c_4 h_d h_u + c_5 h_d^2 + \dots$$

- → Are there really infinite textures? $(Y_u Y_u^{\dagger})^n$?
- \rightarrow If not, how many?
- → Are there assumption independent correlations among flavor observables?

- → Let's take MFV seriously
- → Only symmetry principle, no extra assumptions

$$C = c_0 1 + c_1 h_u + c_2 h_d + c_3 h_u^2 + c_3 h_u h_d + c_4 h_d h_u + c_5 h_d^2 + \dots$$

- → Are there really infinite textures? $(Y_u Y_u^{\dagger})^n$?
- \rightarrow If not, how many?
- → Are there assumption independent correlations among flavor observables?

permystifying Hilbert series (for invariants)

 \rightarrow Consider a symmetry group G = U(1)

and a single complex scalar field $\{\phi_1, \phi_1^*\}$ charged (+1, -1)

pemystifying Hilbert series (for invariants)

 \rightarrow Consider a symmetry group G = U(1)

and a single complex scalar field $\{\phi_1, \phi_1^*\}$ charged (+1, -1)

$$I \equiv \phi_1 \phi_1^*$$

The set of *G*-invariant polynomials = $1 \oplus I \oplus I^2 \oplus I^3 \oplus \cdots \equiv \{I^k\}$.

pemystifying Hilbert series (for invariants)

 \rightarrow Consider a symmetry group G = U(1)

and a single complex scalar field $\{\phi_1, \phi_1^*\}$ charged (+1, -1)

$$I \equiv \phi_1 \phi_1^*$$

The set of *G*-invariant polynomials = $1 \oplus I \oplus I^2 \oplus I^3 \oplus \cdots \equiv \{I^k\}$.

→ Hilbert series:

vernystifying Hilbert series (for invariants)

 \rightarrow Consider a symmetry group G = U(1)

and a single complex scalar field $\{\phi_1, \phi_1^*\}$ charged (+1, -1)

$$I \equiv \phi_1 \phi_1^*$$

The set of G-invariant polynomials = $1 \oplus I \oplus I^2 \oplus I^3 \oplus \cdots \equiv \{I^k\}$.

→ Hilbert series: $H(q) = \sum_{n=0}^{\infty} n_{\text{Inv}}(n) q^n$ Number of invariant operators at order n $\mathcal{H}_{\text{Inv}}^{U(1), (+1, -1)}(q) = 1 + q^2 + q^4 + q^6 + \dots = \frac{1}{1 - q^2}, \qquad |q| < 1$

Based on 2312.13349

pernystinying Hilbert series II (for invariants)

- $G = U(1) \qquad \Phi = \{\phi_1, \phi_1^*, \phi_2, \phi_2^*\} \qquad Q = \{+1, -1, +1, -1\}$
- \rightarrow 4 Basic invariants:

$$I_1 \equiv \phi_1 \phi_1^*, \qquad I_2 \equiv \phi_2 \phi_2^*, \qquad I_3 \equiv \phi_1 \phi_2^*, \qquad I_4 \equiv \phi_2 \phi_1^*.$$

pernystiny"-Hilbert series II (for invariants)

- $G = U(1) \qquad \Phi = \{\phi_1, \phi_1^*, \phi_2, \phi_2^*\} \qquad Q = \{+1, -1, +1, -1\}$
- \rightarrow 4 Basic invariants:

 $I_1 \equiv \phi_1 \phi_1^*, \qquad I_2 \equiv \phi_2 \phi_2^*, \qquad I_3 \equiv \phi_1 \phi_2^*, \qquad I_4 \equiv \phi_2 \phi_1^*.$

\rightarrow Naively:

 $(1 \oplus I_1 \oplus I_1^2 \oplus \cdots)(1 \oplus I_2 \oplus I_2^2 \oplus \cdots)(1 \oplus I_3 \oplus I_3^2 \oplus \cdots)(1 \oplus I_4 \oplus I_4^2 \oplus \cdots) \implies \mathcal{H}_{\text{Inv}}\Big|_{\text{naive}} = \frac{1}{(1-q^2)^4}$

pernystifyme Hilbert series II (for invariants)

- $G = U(1) \qquad \Phi = \{\phi_1, \phi_1^*, \phi_2, \phi_2^*\} \qquad Q = \{+1, -1, +1, -1\}$
- \rightarrow 4 Basic invariants:

 $I_1 \equiv \phi_1 \phi_1^*, \qquad I_2 \equiv \phi_2 \phi_2^*, \qquad I_3 \equiv \phi_1 \phi_2^*, \qquad I_4 \equiv \phi_2 \phi_1^*.$

→ Naively:

 $(1 \oplus I_1 \oplus I_1^2 \oplus \cdots)(1 \oplus I_2 \oplus I_2^2 \oplus \cdots)(1 \oplus I_3 \oplus I_3^2 \oplus \cdots)(1 \oplus I_4 \oplus I_4^2 \oplus \cdots) \implies \mathcal{H}_{\text{Inv}}\Big|_{\text{naive}} = \frac{1}{(1 - a^2)^4}$

→ Redundancy (syzygy): $I_1I_2 = \phi_1 \phi_1^* \phi_2 \phi_2^* = I_3I_4 \implies -\frac{q^4}{(1-q^2)^4}$

pernystifyme Hilbert series II (for invariants)

- $G = U(1) \qquad \Phi = \{\phi_1, \phi_1^*, \phi_2, \phi_2^*\} \qquad Q = \{+1, -1, +1, -1\}$
- \rightarrow 4 Basic invariants:

 $I_1 \equiv \phi_1 \phi_1^*, \qquad I_2 \equiv \phi_2 \phi_2^*, \qquad I_3 \equiv \phi_1 \phi_2^*, \qquad I_4 \equiv \phi_2 \phi_1^*.$

→ Naively:

 $(1 \oplus I_1 \oplus I_1^2 \oplus \cdots)(1 \oplus I_2 \oplus I_2^2 \oplus \cdots)(1 \oplus I_3 \oplus I_3^2 \oplus \cdots)(1 \oplus I_4 \oplus I_4^2 \oplus \cdots) \implies \mathcal{H}_{\text{Inv}}\Big|_{\text{naive}} = \frac{1}{(1 - q^2)^4}$

→ Redundancy (syzygy): $I_1I_2 = \phi_1\phi_1^*\phi_2\phi_2^* = I_3I_4 \implies -\frac{q^4}{(1-q^2)^4}$

→ True HS: $\mathcal{H}_{\text{Inv}} = \frac{1 - q^4}{(1 - q^2)^4} = \frac{1 + q^2}{(1 - q^2)^3}$ Based on 2312.13349 Demysting: Hilbert series: primary and sec. invariants

Demystifying Hilbert series: primary and sec. invariants $G = U(1) \qquad \Phi = \{\phi_1, \phi_1^*, \phi_2, \phi_2^*\} \qquad Q = \{+1, -1, +1, -1\}$ → $\mathcal{H}_{\text{Inv}} = \frac{1+q^2}{(1-q^2)^3} = (1+q^2+q^4+q^6+\cdots)^3(1+q^2)$ $\left\{P_1^{k_1}\right\} \otimes \left\{P_2^{k_2}\right\} \otimes \left\{P_3^{k_3}\right\} \otimes \left(1 \oplus S\right),$ **3 Primary invariants 1 Secondary invariant** $P_1 = \phi_1 \phi_1^*, \quad P_2 = \phi_2 \phi_2^*, \quad P_3 = \phi_1 \phi_2^* + \phi_2 \phi_1^*, \quad S = \phi_1 \phi_2^* - \phi_2 \phi_1^*,$

Demystifying Hilbert series: primary and sec. invariants $G = U(1) \qquad \Phi = \{\phi_1, \phi_1^*, \phi_2, \phi_2^*\} \qquad Q = \{+1, -1, +1, -1\}$ → $\mathcal{H}_{Inv} = \frac{1+q^2}{(1-q^2)^3} = (1+q^2+q^4+q^6+\cdots)^3(1+q^2)$ $\left\{P_1^{k_1}\right\} \otimes \left\{P_2^{k_2}\right\} \otimes \left\{P_3^{k_3}\right\} \otimes \left(1 \oplus S\right),$ **3 Primary invariants 1 Secondary invariant** $P_1 = \phi_1 \phi_1^*, \quad P_2 = \phi_2 \phi_2^*, \quad P_3 = \phi_1 \phi_2^* + \phi_2 \phi_1^*, \quad S = \phi_1 \phi_2^* - \phi_2 \phi_1^*,$

→ Secondary only arises linearly since:

$$I_1 I_2 = I_3 I_4 \implies S^2 = P_3^2 - 4P_1 P_2$$

Hilbert series: primary and sec. invariants $G = U(1) \qquad \Phi = \{\phi_1, \phi_1^*, \phi_2, \phi_2^*\} \qquad Q = \{+1, -1, +1, -1\}$ → $\mathcal{H}_{\text{Inv}} = \frac{1+q^2}{(1-q^2)^3} = (1+q^2+q^4+q^6+\cdots)^3(1+q^2)$ Hironaka decomposition: ant Any Inv. polynomial = $p(P_1, P_2, P_3) + p_S(P_1, P_2, P_3) S$, P_1 Secondary only arises linearly since: \rightarrow

$$I_1 I_2 = I_3 I_4 \implies S^2 = P_3^2 - 4P_1 P_2$$

How to compute Hilbert series?

(

$$H(q) = \sum_{n=0}^{\infty} n_{\text{Inv}}(n) q^n$$

$$\Phi = \left\{ \phi_1, \phi_2, \cdots, \phi_m \right\}, \qquad R_\Phi = \bigoplus_i R_{\phi_i}.$$
$$R_{\Phi^k} = \operatorname{sym}\left(\underbrace{R_\Phi \otimes R_\Phi \otimes \cdots \otimes R_\Phi}_k\right) = n_{\operatorname{Inv}}(k) \operatorname{Inv} \oplus \text{ other irreps}$$

How to compute Hilbert series?

$$H(q) = \sum_{n=0}^{\infty} n_{\text{Inv}}(n) q^n$$

$$\Phi = \left\{ \phi_1, \phi_2, \cdots, \phi_m \right\}, \qquad R_\Phi = \bigoplus_i R_{\phi_i}.$$

$$g_k = \operatorname{sym} \left(R_\Phi \otimes R_\Phi \otimes \cdots \otimes R_\Phi \right) = n_{\operatorname{Inv}}(k) \operatorname{Inv} \oplus \operatorname{other}$$

$$R_{\Phi^k} = \operatorname{sym}\left(\underbrace{R_{\Phi} \otimes R_{\Phi} \otimes \cdots \otimes R_{\Phi}}_{k}\right) = n_{\operatorname{Inv}}(k) \operatorname{Inv} \oplus \text{ other irreps}$$

Character: \rightarrow

$$\chi_{R_{\Phi}}(g(x)) = \operatorname{tr}(g_{R_{\Phi}}(x)).$$

Character orthogonality: \rightarrow

1

$$\int d\mu_G(x) \,\chi_{R_1}^*(x) \chi_{R_2}(x) = \delta_{R_1 R_2}$$

How to compute Hilbert series?

$$H(q) = \sum_{n=0}^{\infty} n_{\rm Inv}(n) \, q^n$$

$$\Phi = \left\{ \phi_1, \phi_2, \cdots, \phi_m \right\}, \qquad R_{\Phi} = \bigoplus_i R_{\phi_i}.$$

$$R_{\Phi^k} = \operatorname{sym}\left(\underbrace{R_{\Phi} \otimes R_{\Phi} \otimes \cdots \otimes R_{\Phi}}_{k}\right) = n_{\operatorname{Inv}}(k) \operatorname{Inv} \oplus \text{ other irreps}$$

→ Character:

$$\chi_{R_{\Phi}}(g(x)) = \operatorname{tr}(g_{R_{\Phi}}(x)).$$

→ Character orthogonality:

$$\int d\mu_G(x) \,\chi_{R_1}^*(x) \chi_{R_2}(x) = \delta_{R_1 R_2}$$
$$R_1 = \text{Inv and } R_2 = R_{\Phi^k}$$
$$n_{\text{Inv}}(k) = \int d\mu_G(x) \,\chi_{\text{Inv}}^*(x) \,\chi_{R_{\Phi^k}}(x)$$

 $H(q) = \sum_{n=0}^{\infty} n_{\mathrm{Inv}}(n) \, q^n$ How to compute Hilbert series? $\Phi = \left\{ \phi_1, \, \phi_2, \, \cdots, \, \phi_m \right\}, \qquad R_\Phi = \bigoplus R_{\phi_i} \, .$ Molien formula to compute HS \rightarrow $\mathcal{H}_{\text{Inv}}^{G,R_{\Phi}}(q) = \sum_{k=0}^{\infty} \int d\mu_G(x) \, \chi_{R_{\Phi^k}}(x) \, q^k = \int d\mu_G(x) \frac{1}{\det\left[1 - qg_{R_{\Phi}}(x)\right]}$ $\int d\mu_G(x) \chi^*_{R_1}(x) \chi_{R_2}(x) = \delta_{R_1 R_2}$ $R_1 = \text{Inv and } R_2 = R_{\Phi^k}$ $n_{\mathrm{Inv}}(k) = \int \mathrm{d}\mu_G(x) \, \chi^*_{\mathrm{Inv}}(x) \, \chi_{R_{\Phi^k}}(x)$

Applications of Hilbert Series

- → Supersymmetric gauge theories , general supersymmetric EFTs
- → SMEFT, SMEFT with gravity
- → QCD Chiral Lagrangian, Higgs EFT, NRQED and NRQCD
- \rightarrow EFTs for axion-like particles
- → Primary observables at colliders
- → Flavor invariants

[Grojean et al, 23]

[Chang, et al, 22]

[Jenkins+Manohar, 09] [Hanany et al, 10] [Benvenuti et al, 07] [Feng et al, 07] [Gray et al, 08] [Delgado et al, 23]

[Kobach, et al, 18]

[Lehman et al, 15] [Henning, et al, 15] [Lehman et al, 16] [Henning, et al, 17] [Marinissen et al, 20] [Kondo, et al, 23] [Ruhdorfer et al, 19] [Graf et al, 21] [Sun, et al, 22] [Kobach, et al, 17]

[Jenkins+Manohar, 09] Hilbert Series for flavor invariants [Hanany et al, 10] [Broer, 94] $h_u \equiv Y_u Y_u^{\dagger} \quad h_d \equiv Y_d Y_d^{\dagger}$ $\mathcal{L}_{\text{Yukawa}} = -\overline{Q}_{I}Y_{u}\widetilde{\Phi}u_{R} - \overline{Q}_{I}Y_{d}\Phi d_{R} + \text{ h.c.}$ $G_F = U(3)_{Q_L} \times U(3)_{u_R} \times U(3)_{d_R}$ \rightarrow Group: Building blocks: $Y_u \sim (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1})$ $Y_d \sim (\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}})$ \rightarrow $\mathcal{H}_{\text{Inv}}(q) = \frac{1+q^{12}}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)}$ Hilbert series: \rightarrow

Hilbert Series for flavor invariants

$$\mathcal{L}_{\text{Yukawa}} = -\overline{Q}_L Y_u \widetilde{\Phi} u_R - \overline{Q}_L Y_d \Phi d_R + \text{ h.c.}$$

→ Group:
$$G_F = U(3)_{Q_L} \times U(3)_{u_R} \times U(3)_{d_R}$$

➔ Building blocks:

Hilbert series:

$$Y_{u} \sim (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}) \qquad Y_{d} \sim (\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}})$$
$$\mathcal{H}_{\text{Inv}}(q) = \frac{1 + q^{12}}{(1 - q^{2})^{2} (1 - q^{4})^{3} (1 - q^{6})^{4} (1 - q^{6})^$$

[Jenkins+Manohar, 09] [Hanany et al, 10] [Broer, 94]

$$h_u \equiv Y_u Y_u^{\dagger} \quad h_d \equiv Y_d Y_d^{\dagger}$$

→ Properties

 \rightarrow

- 10 prim. inv. = 10 phys. param.
- Polynomial invariants form a ring
- Positive coefs. in numerator
- Palindromic numerator
- Hironaka decomposition

10 Primary invariants1 Secondary invariant $P_{2,0} = \operatorname{Tr} [h_u]$, $P_{0,2} = \operatorname{Tr} [h_d]$, $P_{4,0} = \operatorname{Tr} [h_u^2]$, $P_{0,4} = \operatorname{Tr} [h_d^2]$, $S = \operatorname{Im} \operatorname{Tr} [h_u h_d h_u^2 h_d^2]$ $P_{2,2} = \operatorname{Tr} [h_u h_d]$, $= -\frac{i}{2} \det \left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger} \right]$ $P_{6,0} = \operatorname{Tr} [h_u^3]$, $P_{0,6} = \operatorname{Tr} [h_d^3]$, $\equiv \operatorname{Jarlskog determinant}$ $P_{4,2} = \operatorname{Tr} [h_u^2 h_d]$, $P_{2,4} = \operatorname{Tr} [h_u h_d^2]$, $J^2 = \operatorname{poly}(P_1, \ldots, P_{10})$ $P_{4,4} = \operatorname{Tr} [h_u^2 h_d^2]$, $P_{0,6} = \operatorname{Tr} [h_u^2 h_d^2]$ $P_{0,6} = \operatorname{Tr} [h_u h_d^2]$

 q^{8})

Based on 2312.13349

Extension: Hilbert series for covariants

→ Hilbert Series can also count rep-R covariants

 $R_{\Phi^k} = n_R(k) R \oplus \text{ other irreps} \,.$ $n_{\text{Inv}}(k) = \int d\mu_G(x) \,\chi^*_{\text{Inv}}(x) \,\chi_{R_{\Phi^k}}(x)$

Extension: Hilbert series for covariants

➔ Hilbert Series can also count rep-R covariants

$$\begin{split} R_{\Phi^k} &= n_R(k) \, R \, \oplus \, \text{other irreps} \, . \\ n_{\text{Inv}}(k) &= \int \mathrm{d} \mu_G(x) \, \chi^*_{\text{Inv}}(x) \, \chi_{R_{\Phi^k}}(x) \\ & \checkmark \quad \chi^*_{\text{Inv}}(x) = 1 \, \longrightarrow \, \chi^*_R(x) \\ n_R(k) &= \int \mathrm{d} \mu_G(x) \, \chi^*_R(x) \, \chi_{R_{\Phi^k}}(x) \, . \end{split}$$

$$\mathcal{H}_{R}^{G, R_{\Phi}}(q) \equiv \sum_{k=0}^{\infty} n_{R}(k) q^{k} = \int \mathrm{d}\mu_{G}(x) \,\chi_{R}^{*}(x) \,\frac{1}{\det\left[1 - q \,g_{R_{\Phi}}(x)\right]} \,.$$

Based on 2312.13349

Hilbert series for covariants: example

- → Group: G = U(1)
- → Building blocks: $\Phi = \{\phi_1, \phi_1^*, \phi_2, \phi_2^*\}$ $Q = \{+1, -1, +1, -1\}$
- → Goal representation: Q = +2
- → Hilbert series:

$$\mathcal{H}_{+2}^{U(1),\,2\times(+1,-1)}(q) = \oint_{|z|=1} \frac{\mathrm{d}z}{2\pi i} \frac{1}{z} \, z^{-2} \, \frac{1}{(1-qz)^2 (1-qz^{-1})^2}$$
$$= \left[\frac{\mathrm{d}}{\mathrm{d}z} \, \frac{1}{z(1-qz)^2} \right] \bigg|_{z=q} = \frac{3q^2-q^4}{(1-q^2)^3} \, .$$

 $\mathcal{H}_{\rm Inv} = \frac{1+q^2}{(1-q^2)^3}$

Hilbert series for covariants: Properties

→ Rep-R covariants form a module over the ring of invariants $\mathcal{M}_{R}^{G,R_{\Phi}}$

$$r_i \in \mathbb{r}_{\text{Inv}}, \quad v_i \in \mathcal{M}_R^{G, R_{\Phi}} \implies \sum_i r_i v_i \in \mathcal{M}_R^{G, R_{\Phi}}.$$

- → Negative coefficients arise in the numerator => redundancies
- → The denominator corresponds to the primary invariants

 $\mathcal{H}_{\rm Inv} = \frac{1+q^2}{\left(1-q^2\right)^3}$

 $\mathcal{H}_{+2}(q) = \frac{3q^2 - q^4}{(1 - q^2)^3}.$

Hilbert series for covariants: Properties

→ Rep-R covariants form a module over the ring of invariants $\mathcal{M}_{R}^{G,R_{\Phi}}$

$$r_i \in \mathbb{r}_{\mathrm{Inv}}, \quad v_i \in \mathcal{M}_R^{G, R_{\Phi}} \implies \sum_i r_i v_i \in \mathcal{M}_R^{G, R_{\Phi}}.$$

- → Negative coefficients arise in the numerator => redundancies
- → The denominator corresponds to the primary invariants
- → Generating set: Every covariant is a linear combination of them
- → Linear independence
- \rightarrow Basis is not guaranteed to exist. If it does, the module is free.

Based on 2312.13349

 $\mathcal{H}_{\rm Inv} = \frac{1+q^2}{\left(1-q^2\right)^3}$

 $\mathcal{H}_{+2}(q) = \frac{3q^2 - q^4}{(1 - q^2)^3}.$

Hilbert series for covariants: example

→
$$G = U(1)$$
 $\Phi = \{\phi_1, \phi_1^*, \phi_2, \phi_2^*\}$ $Q = \{+1, -1, +1, -1\}$ $Q = +2$

→ HS:
$$\mathcal{H}_{+2}(q) = \frac{3q^2 - q^4}{(1 - q^2)^3}$$
. $\mathcal{H}_{Inv} = \frac{1 + q^2}{(1 - q^2)^3}$ $P_1 = \phi_1 \phi_1^*, \qquad P_2 = \phi_2 \phi_2^*,$
 $P_3 = \phi_1 \phi_2^* + \phi_2 \phi_1^*, \quad S = \phi_1 \phi_2^* - \phi_2 \phi_1^*$

→ Generating set:

$$v_1 = \phi_1 \phi_1$$
, $v_2 = \phi_2 \phi_2$, $v_3 = \phi_1 \phi_2$

 \rightarrow Not linearly independent, there is a redundancy $O(q^4)$

$$P_3 v_3 = P_2 v_1 + P_1 v_2$$

- → Rank: "Maximal number of linearly independent vectors"
- → Computation:

$$\operatorname{rank}\left(_{\mathbb{I}_{\operatorname{Inv}}}\mathcal{M}_{R}^{G,R_{\Phi}}\right) = \frac{\mathcal{H}_{R}^{G,R_{\Phi}}(q)}{\mathcal{H}_{\operatorname{Inv}}^{G,R_{\Phi}}(q)}\bigg|_{q=1}$$

- → Rank: "Maximal number of linearly independent vectors"
- → Computation:

 \rightarrow

$$\operatorname{rank}\left(_{\mathbb{\Gamma}_{\operatorname{Inv}}}\mathcal{M}_{R}^{G,R_{\Phi}}\right) = \frac{\mathcal{H}_{R}^{G,R_{\Phi}}(q)}{\mathcal{H}_{\operatorname{Inv}}^{G,R_{\Phi}}(q)}\bigg|_{q=1}$$

 \rightarrow Bound on the rank:

Rank saturation:

$$\operatorname{rank}\left(_{\mathbb{\Gamma}_{\operatorname{Inv}}}\mathcal{M}_{R}^{G,R_{\Phi}}\right) \leq \dim(R) \,.$$
$$\operatorname{rank}\left(_{\sigma_{\operatorname{Inv}}}\mathcal{M}_{R}^{G,R_{\Phi}}\right) = \dim(R)$$

- → Rank: "Maximal number of linearly independent vectors"
- → Computation:

$$\operatorname{rank}\left(_{\mathbb{\Gamma}_{\operatorname{Inv}}}\mathcal{M}_{R}^{G,R_{\Phi}}\right) = \frac{\mathcal{H}_{R}^{G,R_{\Phi}}(q)}{\mathcal{H}_{\operatorname{Inv}}^{G,R_{\Phi}}(q)}\Big|_{q=1}$$

 \rightarrow Bound on the rank:

nk:
$$\operatorname{rank}\left(_{\mathbb{\Gamma}_{\operatorname{Inv}}}\mathcal{M}_{R}^{G,R_{\Phi}}\right) \leq \dim(R).$$

 $\operatorname{rank}\left(_{\sigma_{\operatorname{Inv}}}\mathcal{M}_{R}^{G,R_{\Phi}}\right) = \dim(R).$

One can build the most general rep-R covariant!

 \rightarrow Rank saturation:

- → Rank: "Maximal number of linearly independent vectors"
- → Computation:

$$\operatorname{rank}\left(_{\mathbb{\Gamma}_{\operatorname{Inv}}}\mathcal{M}_{R}^{G,R_{\Phi}}\right) = \frac{\mathcal{H}_{R}^{G,R_{\Phi}}(q)}{\mathcal{H}_{\operatorname{Inv}}^{G,R_{\Phi}}(q)}\Big|_{q=1}$$

 \rightarrow Bound on the rank:

Rank saturation:

 \rightarrow

$$\operatorname{rank}\left(_{\mathbb{r}_{\operatorname{Inv}}}\mathcal{M}_{R}^{G,R_{\Phi}}\right) \leq \dim(R) \,.$$
$$\operatorname{rank}\left(_{\sigma_{\operatorname{Inv}}}\mathcal{M}_{R}^{G,R_{\Phi}}\right) = \dim(R) \longrightarrow$$

One can build the most general rep-R covariant!

→ Theorem by [Brion, 93]

$$\operatorname{rank}\left(_{\mathbb{\Gamma}_{\operatorname{Inv}}}\mathcal{M}_{R}^{G,\,R_{\Phi}}\right) = \dim\left(R^{H}\right)$$

Hilbert series for covariants: Applications

- → OPE (Operator Product Expansion)
- → Counting form factors
- → Amplitudes
- → Counting hadrons in a confining theory
- → Spurion analysis → e.g. Minimal Flavor Violation

- → Let's take MFV seriously
- → Only symmetry principle, no extra assumptions

$$C = c_0 1 + c_1 h_u + c_2 h_d + c_3 h_u^2 + c_3 h_u h_d + c_4 h_d h_u + c_5 h_d^2 + \dots$$

- → Are there really infinite textures? $(Y_u Y_u^{\dagger})^n$?
- \rightarrow If not, how many?
- → Are there assumption independent correlations among flavor observables?

5 :	$\psi^2 H^3 + \text{h.c.}$	$SU(3)_{q,u,d}$			
Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	(1 , 1 , 1)			
Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\tilde{H})$	$({f 3},{f ar 3},{f 1})$			
Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$	$({\bf 3},{\bf 1},{\bf \bar 3})$			

		6	$\delta: \psi^2 X H + \text{h.c.}$		$SU(3)_{q,u,d}$		2	$7:\psi^2$	H^2D	5	$SU(3)_{q,u,d}$	
	Ģ	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W$	$I_{\mu\nu}$	(1, 1, 1)	$Q_{Hl}^{(1)}$		(H	$(\bar{l}_p \gamma^{\mu} l) (\bar{l}_p \gamma^{\mu} l)$	r)	$({f 1},{f 1},{f 1})$	
	ζ	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$,	$({f 1},{f 1},{f 1})$	$Q_{Hl}^{(3)}$		$(H^{\dagger}$	$i\overleftrightarrow{D}^{I}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}$	$l_r)$	(1 , 1 , 1)	
	G	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{H} G$	$^{A}_{\mu\nu}$	$({f 3},{f ar 3},{f 1})$	Q_{He}		(H	$^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e$	$e_r)$	(1 , 1 , 1)	
	Ç	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W$	$^{rI}_{\mu\nu}$	$({f 3},{f ar 3},{f 1})$	$Q_{Hq}^{(1)}$		(H	$^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q$	q_r) (1	${f l} \oplus {f 8}, {f 1}, {f 1})$	
$Q_{uB} = (\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$		ν	$({f 3},{f ar 3},{f 1})$	$Q_{Hq}^{(3)}$		(H^{\dagger})	$(H^{\dagger}i\overleftrightarrow{D}{}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		$(1\oplus8,1,1)$			
$Q_{dG} = (\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_\mu$		$^{A}_{\mu\nu}$	$(3,1,\mathbf{ar{3}})$		Q_{Hu}		$I^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$		$(1,1\oplus8,1)$			
$Q_{dW} \qquad (\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_\mu$		$^{rI}_{\mu\nu}$	$({f 3},{f 1},{f ar 3})$	Q_{Hd}		(H)	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$		$(1,1,1\oplus8)$			
Q_{dB} $(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$		ν	$({\bf 3},{f 1},{f ar 3})$	Q_{Hud} + h.c.		$i(\hat{I}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$		$({\bf 1},{\bf 3},{\bf \bar 3})$			
		8:	$(\bar{L}L)(\bar{L}L)$		$SU(3)_{q,u,d}$			8:	$(\bar{L}L)(\bar{R}R)$		$SU(3)_{q,u,a}$	ł
	Q_{ll}	$(\bar{l}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$		(1 , 1 , 1)		Q_{le}		$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t$)	$({f 1},{f 1},{f 1})$	
	$Q_{qq}^{(1)}$	(\bar{q})	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$ (1		$\oplus 1 \oplus 8 \oplus 8 \oplus 27, 1, 2$	$(1, 1)$ Q_{lu}		$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$)	$(1,1\oplus8,1)$	
	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ (1		(1	$1 \oplus 1 \oplus 8 \oplus 8 \oplus 27, 1, 1)$		Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$)	$(1,1,1\oplus8)$	
	$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$			$(1\oplus8,1,1)$		Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$)	$(1\oplus8,1,1)$	
	$Q_{lq}^{(3)} = (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$			$(1\oplus8,1,1)$		$Q_{qu}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{u}_s\gamma^\mu u_t)$		<i>t</i>)	$(1\oplus8,1\oplus8,1)$		
							$Q_{qu}^{(8)}$	$(\bar{q}_p\gamma$	$(\bar{u}_s \gamma^\mu T^A q_r) (\bar{u}_s \gamma^\mu T)$	(A_{u_t})	$(1 \oplus 8, 1 \oplus 8$, 1)
							$Q_{qd}^{(1)}$	($(\bar{q}_p\gamma_\mu q_r)(\bar{d}_s\gamma^\mu d_t)$.)	$(1\oplus8,1,1\oplus$	8)
							$Q_{qd}^{(8)}$	$(\bar{q}_p\gamma)$	$\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T)$	(Ad_t)	$(1\oplus8,1,1\oplus$	8)
		8	$:(\bar{R}R)(\bar{R}R)$		$SU(3)_{q,u,d}$			8	$(\bar{L}R)(\bar{L}R) + h$	1.c.	$SU(3)_{q,i}$	u,d
	Q_{ee}		$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$		$({f 1},{f 1},{f 1})$		Q	(1) quqd	$(ar{q}_p^j u_r) \epsilon_{jk} ($	$\bar{q}_s^k d_t)$	$(ar{f 3}\oplus {f 6},ar{f 3}$	$, \overline{3})$
	Q_{uu}		$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$		$(1,1\oplus1\oplus8\oplus8\oplus$	27, 1)	Q	(8) quqd	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} ($	$\bar{q}_s^k T^A d_t$	$(ar{f 3}\oplus {f 6},ar{f 3}$	$, \mathbf{\bar{3}})$
	Q_{dd}	$Q_{dd} = (ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$			$(1,1,1\oplus1\oplus8\oplus8)$	$(8 \oplus 27)$ $Q_l^{(}$		$_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$		$({f 3},{f ar 3},{f 1}$.)
	Q_{eu} $(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$			$(1,1\oplus8,1)$	$1) \qquad \qquad Q_{lequ}^{(3)} (\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon$		$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (e_j)$	$ar{q}_s^k \sigma^{\mu u} u_t)$ (3, $ar{3}, 1$)				
	Q_{ed}		$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$		$(1,1,1\oplus8)$							
	$Q_{ud}^{(1)}$		$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$		$(1,1\oplus8,1\oplus8)$	3)	8	$:(\bar{L}F)$	$R(\bar{R}L) + h.c.$	SU(3)	q,u,d	
)	$Q_{ud}^{(8)}$	$(\bar{u}_p$	$(\bar{d}_s \gamma^\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_s)$	$d_t)$	$(1,1\oplus8,1\oplus8)$	3)	Q	ledq	$(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$	$(ar{3}, oldsymbol{1},$	3)	

Based on **2312.13349**

Hilbert series for all d=6 MFV covariants

$$\begin{split} \mathcal{H}_{(1,1,1)} &= \frac{1+q^{12}}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(8,1,1)} &= \frac{2 \left(q^2+2q^4+2q^6+2q^8+q^{10}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(1,8,1)} &= \frac{q^2 \left(1+2q^2+3q^4+4q^6+4q^8+2q^{10}+q^{12}-q^{16}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(3,3,1)} &= \frac{q \left(1+2q^2+4q^4+4q^6+4q^8+2q^{10}+q^{12}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(1,3,3)} &= \frac{q^2 \left(1+2q^2+4q^4+4q^6+4q^8+2q^{10}+q^{12}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(27,1,1)} &= \frac{3q^4+8q^6+17q^8+20q^{10}+19q^{12}+8q^{14}-q^{16}-8q^{18}-7q^{20}-4q^{22}-q^{24}}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(10,1,1)} &= \frac{q^4 (1+6q^2+7q^4+8q^6+4q^8-3q^{12}-2q^{14}-q^{16})}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(1,10,1)} &= \frac{q^6 (2+3q^2+6q^4+7q^6+6q^8+2q^{10}-3q^{14}-2q^{16}-q^{18})}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \end{split}$$

 $\mathcal{H}_{(1,8,1)} = \mathcal{H}_{(1,1,8)}$ and $\mathcal{H}_{(1,27,1)} = \mathcal{H}_{(1,1,27)}$

Based on 2312.13349

Hilbert series (8,1,1)

$$\mathcal{H}_{(\mathbf{8},\mathbf{1},\mathbf{1})} = \frac{2\left(q^2 + 2q^4 + 2q^6 + 2q^8 + q^{10}\right)}{\left(1 - q^2\right)^2 \left(1 - q^4\right)^3 \left(1 - q^6\right)^4 \left(1 - q^8\right)}$$

$$\begin{split} \mathcal{O}(q^2): & V_{q^2,a}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u \,, & V_{q^2,b}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d \,, \\ \mathcal{O}(q^4): & V_{q^4,a}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u^2 \,, & V_{q^4,b}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d^2 \,, \\ & V_{q^4,c}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u h_d \,, & V_{q^4,d}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d h_u \,, \\ \mathcal{O}(q^6): & V_{q^6,a}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u^2 h_d \,, & V_{q^6,c}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d^2 h_u \\ & V_{q^6,b}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u h_d^2 \,, & V_{q^6,d}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d h_u^2 \,, \\ \mathcal{O}(q^8): & V_{q^8,a}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u^2 h_d^2 \,, & V_{q^8,b}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d^2 h_u^2 \,, \\ & V_{q^8,c}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u^2 h_d h_u \,, & V_{q^8,d}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d^2 h_u h_d \,, \\ \mathcal{O}(q^{10}): & V_{q^{10},a}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u^2 h_d h_u h_d \,, & V_{q^{10},b}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d^2 h_u h_d h_u \,. \end{split}$$

Ex.
$$\frac{C_{pr}}{\Lambda^2} (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{q}_p \gamma^{\mu} q_r)$$

→ Reproduced with traditional methods

Cayley-Hamilton Theorem:

$$\mathbf{A}^{3} = (\operatorname{tr} \mathbf{A})\mathbf{A}^{2} - \frac{1}{2}\left((\operatorname{tr} \mathbf{A})^{2} - \operatorname{tr}\left(\mathbf{A}^{2}\right)\right)\mathbf{A} + \operatorname{det}(\mathbf{A})I_{3}$$

 $\mathcal{H}_{\text{Inv}}(q) = \frac{1+q^{12}}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)}$ Based on **2312.13349**

[Mercolli+Smith, 09]

Hilbert series (8.1.1) $\mathcal{H}_{(\mathbf{8},\mathbf{1},\mathbf{1})} = \frac{2\left(q^2 + 2q^4 + 2q^6 + 2q^8 + q^{10}\right)}{\left(1 - q^2\right)^2 \left(1 - q^4\right)^3 \left(1 - q^6\right)^4 \left(1 - q^8\right)}$ $\mathcal{O}(q^2): \qquad V^{(\mathbf{8},\mathbf{1},\mathbf{1})}_{a^2.a} = h_u \,,$ $V_{a^2 h}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d$, $\mathcal{O}(q^4): \qquad V_{q^4,a}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u^2, \qquad V_{a^4,b}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d^2,$ $V_{a^4,c}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u h_d, \qquad V_{a^4,d}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d h_u,$ $V_{q^6,a}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u^2 h_d , \qquad \qquad V_{q^6,c}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d^2 h_u$ $\mathcal{O}(q^6)$: $V_{a^6,b}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u h_d^2, \qquad \qquad V_{a^6,d}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d h_u^2,$ $V_{a^8,b}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d^2 h_u^2,$ $V^{(m{8,1,1})}_{a^8.a} = h_u^2 h_d^2 \,,$ $\mathcal{O}(q^8)$: $V_{q^{8},c}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_{u}^{2}h_{d}h_{u}, \qquad \qquad V_{q^{8},d}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_{d}^{2}h_{u}h_{d},$ $V_{a^{10}a}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_u^2 h_d h_u h_d \,,$ $O(q^{10})$:

Ex.
$$\frac{C_{pr}}{\Lambda^2} (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{q}_p \gamma^{\mu} q_r)$$

→ Reproduced with traditional methods

Cayley-Hamilton Theorem:

$$\mathbf{A}^{3} = (\operatorname{tr} \mathbf{A})\mathbf{A}^{2} - \frac{1}{2}\left((\operatorname{tr} \mathbf{A})^{2} - \operatorname{tr}\left(\mathbf{A}^{2}\right)\right)\mathbf{A} + \operatorname{det}(\mathbf{A})I_{3}$$

→ No factor $(1+q^{12})$ in the numerator:

$$Jh_u = \sum c_i V_i$$

 $V_{q^{10},b}^{(\mathbf{8},\mathbf{1},\mathbf{1})} = h_d^2 h_u h_d h_u$. \rightarrow Generating set is **not** linearly independent

$$\mathcal{H}_{\text{Inv}}(q) = \frac{1+q^{12}}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)^2}$$

[Mercolli+Smith, 09]

Hilbert series (1,8,1)

Ex.
$$\frac{C_{pr}}{\Lambda^2} (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{u}_p \gamma^{\mu} u_r)$$
.

$$\mathcal{H}_{(\mathbf{1},\mathbf{8},\mathbf{1})}(q) = \frac{q^2 \left(1 + 2q^2 + 3q^4 + 4q^6 + 4q^8 + 2q^{10} + q^{12} - q^{16}\right)}{\left(1 - q^2\right)^2 \left(1 - q^4\right)^3 \left(1 - q^6\right)^4 \left(1 - q^8\right)}.$$

→ Can be understood from H_(8,1,1)(q) and H_(1,1,1)(q)
$$V_{(1,8,1)} \sim Y_u^{\dagger} V_{(8,1,1)} Y_u \quad \text{or} \quad V_{(1,8,1)} \sim Y_u^{\dagger} V_{(1,1,1)} Y_u.$$

$$\mathcal{H}_{(1,8,1)}\Big|_{\text{naive}} = q^2 \left[\mathcal{H}_{(8,1,1)} + \mathcal{H}_{(1,1,1)} \right] = \frac{q^2 \left(1 + 2q^2 + 4q^4 + 4q^6 + 4q^8 + 2q^{10} + q^{12}\right)}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)}$$

Hilbert series (1,8,1)
Ex.
$$\frac{C_{pr}}{\Lambda^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$$
.
 $\mathcal{H}_{(1,8,1)}(q) = \frac{q^2 (1+2q^2+3q^4+4q^6+4q^8+2q^{10}+q^{12}-q^{16})}{(1-q^2)^2 (1-q^4)^3 (1-q^6)^4 (1-q^8)}$.
→ Can be understood from $H_{(8,1,1)}(q)$ and $H_{(1,1,1)}(q)$
 $V_{(1,8,1)} \sim Y_u^{\dagger} V_{(8,1,1)} Y_u$ or $V_{(1,8,1)} \sim Y_u^{\dagger} V_{(1,1,1)} Y_u$.
 $\mathcal{H}_{(1,8,1)}\Big|_{naive} = q^2 \left[\mathcal{H}_{(8,1,1)} + \mathcal{H}_{(1,1,1)}\right] = \frac{q^2 (1+2q^2+4q^4+4q^6+4q^8+2q^{10}+q^{12})}{(1-q^2)^2 (1-q^4)^3 (1-q^6)^4 (1-q^8)}$

Hilbert series (1,8,1) Ex. $\frac{C_{pr}}{\Lambda^2} (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{u}_p \gamma^{\mu} u_r).$ $\mathcal{H}_{(\mathbf{1},\mathbf{8},\mathbf{1})}(q) = \frac{q^2 \left(1 + 2q^2 + 3q^4 + 4q^6 + 4q^8 + 2q^{10} + q^{12} - q^{16}\right)}{\left(1 - q^2\right)^2 \left(1 - q^4\right)^3 \left(1 - q^6\right)^4 \left(1 - q^8\right)}.$ Can be understood from H_(81,1)(q) and H_(11,1)(q) \rightarrow $V_{(1,8,1)} \sim Y_u^{\dagger} V_{(8,1,1)} Y_u$ or $V_{(1,8,1)} \sim Y_u^{\dagger} V_{(1,1,1)} Y_u$.

$$\mathcal{H}_{(\mathbf{1},\mathbf{8},\mathbf{1})}\Big|_{\text{naive}} = q^2 \left[\mathcal{H}_{(\mathbf{8},\mathbf{1},\mathbf{1})} + \mathcal{H}_{(\mathbf{1},\mathbf{1},\mathbf{1})} \right] = \frac{q^2 \left(1 + 2q^2 + 4q^4 + 4q^6 + 4q^8 + 2q^{10} + q^{12} \right)}{\left(1 - q^2 \right)^2 \left(1 - q^4 \right)^3 \left(1 - q^6 \right)^4 \left(1 - q^8 \right)} \right]^2$$

 $\overline{(q)}$

But there are 2 redundancies: \rightarrow

Based on 2312.13349

Hilbert series for $(3, \overline{3}, 1), (3, 1, \overline{3}) \text{ and } (1, 3, \overline{3})$

$$V_{(\mathbf{3},\overline{\mathbf{3}},\mathbf{1})} \sim (V_{(\mathbf{8},\mathbf{1},\mathbf{1})} + V_{(\mathbf{1},\mathbf{1},\mathbf{1})}) Y_u \qquad V_{(\mathbf{3},\mathbf{1},\overline{\mathbf{3}})} \sim (V_{(\mathbf{8},\mathbf{1},\mathbf{1})} + V_{(\mathbf{1},\mathbf{1},\mathbf{1})}) Y_d$$

$$V_{(\mathbf{1},\mathbf{3},\overline{\mathbf{3}})} \sim Y_u^{\dagger} (V_{(\mathbf{8},\mathbf{1},\mathbf{1})} + V_{(\mathbf{1},\mathbf{1},\mathbf{1})}) Y_d$$

$$\mathcal{H}_{(\mathbf{3},\overline{\mathbf{3}},\mathbf{1})} = \mathcal{H}_{(\mathbf{3},\mathbf{1},\overline{\mathbf{3}})} = \frac{q\left(1+2q^2+4q^4+4q^6+4q^8+2q^{10}+q^{12}\right)}{(1-q^2)^2\left(1-q^4\right)^3\left(1-q^6\right)^4\left(1-q^8\right)} = q\left[\mathcal{H}_{(\mathbf{8},\mathbf{1},\mathbf{1})} + \mathcal{H}_{(\mathbf{1},\mathbf{1},\mathbf{1})}\right]$$
$$\mathcal{H}_{(\mathbf{1},\mathbf{3},\overline{\mathbf{3}})} = \frac{q^2\left(1+2q^2+4q^4+4q^6+4q^8+2q^{10}+q^{12}\right)}{(1-q^2)^2\left(1-q^4\right)^3\left(1-q^6\right)^4\left(1-q^8\right)} = q^2\left[\mathcal{H}_{(\mathbf{8},\mathbf{1},\mathbf{1})} + \mathcal{H}_{(\mathbf{1},\mathbf{1},\mathbf{1})}\right]$$
(3.24)

Hilbert series for all d=6 MFV covariants

$$\begin{split} \mathcal{H}_{(1,1,1)} &= \frac{1+q^{12}}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(8,1,1)} &= \frac{2 \left(q^2+2q^4+2q^6+2q^8+q^{10}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(1,8,1)} &= \frac{q^2 \left(1+2q^2+3q^4+4q^6+4q^8+2q^{10}+q^{12}-q^{16}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(3,\overline{3},1)} &= \frac{q \left(1+2q^2+4q^4+4q^6+4q^8+2q^{10}+q^{12}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(1,3,\overline{3})} &= \frac{q^2 \left(1+2q^2+4q^4+4q^6+4q^8+2q^{10}+q^{12}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(27,1,1)} &= \frac{3q^4+8q^6+17q^8+20q^{10}+19q^{12}+8q^{14}-q^{16}-8q^{18}-7q^{20}-4q^{22}-q^{24}}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(10,1,1)} &= \frac{q^4 (1+6q^2+7q^4+8q^6+4q^8-3q^{12}-2q^{14}-q^{16})}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(1,10,1)} &= \frac{q^6 (2+3q^2+6q^4+7q^6+6q^8+2q^{10}-3q^{14}-2q^{16}-q^{18})}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \end{split}$$

$$\begin{aligned} \mathcal{H}_{(1,10,1)} &= \frac{q^6 (2 + 3q^2 + 6q^4 + 7q^6 + 6q^8 + 2q^{10} - 3q^{14} - 2q^{16} - q^{18})}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)} \\ \mathcal{H}_{(1,27,1)} &= \frac{q^4 (1 + 2q^2 + 6q^4 + 10q^6 + 17q^8 + 18q^{10} + 16q^{12} + 6q^{14} - 2q^{16} - 8q^{18} - 7q^{20} - 4q^{22} - q^{24})}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)} \\ \mathcal{H}_{(8,8,1)} &= \frac{q^2 (1 + 6q^2 + 17q^4 + 30q^6 + 39q^8 + 38q^{10} + 24q^{12} + 6q^{14} - 7q^{16} - 12q^{18} - 9q^{20} - 4q^{22} - q^{24})}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)} \\ \mathcal{H}_{(1,8,8)} &= \frac{q^4 (2 + 8q^2 + 19q^4 + 32q^6 + 40q^8 + 36q^{10} + 21q^{12} + 4q^{14} - 9q^{16} - 12q^{18} - 8q^{20} - 4q^{22} - q^{24})}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)} \\ \mathcal{H}_{(3,3,3)} &= \frac{q^2 (1 + 4q^2 + 9q^4 + 14q^6 + 15q^8 + 12q^{10} + 5q^{12} - 3q^{16} - 2q^{18} - q^{20})}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)} \\ \mathcal{H}_{(6,3,3)} &= \frac{q^2 (1 + 4q^2 + 12q^4 + 22q^6 + 32q^8 + 32q^{10} + 24q^{12} + 8q^{14} - 4q^{16} - 10q^{18} - 8q^{20} - 4q^{22} - q^{24})}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)} \\ \mathcal{H}_{(6,3,3)} &= \frac{q^2 (1 + 4q^2 + 12q^4 + 22q^6 + 32q^8 + 32q^{10} + 24q^{12} + 8q^{14} - 4q^{16} - 10q^{18} - 8q^{20} - 4q^{22} - q^{24})}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)} \\ \mathcal{H}_{(6,3,3)} &= \frac{q^2 (1 + 4q^2 + 12q^4 + 22q^6 + 32q^8 + 32q^{10} + 24q^{12} + 8q^{14} - 4q^{16} - 10q^{18} - 8q^{20} - 4q^{22} - q^{24})}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)} \\ \mathcal{H}_{(6,3,3)} &= \frac{q^2 (1 + 4q^2 + 12q^4 + 22q^6 + 32q^8 + 32q^{10} + 24q^{12} + 8q^{14} - 4q^{16} - 10q^{18} - 8q^{20} - 4q^{22} - q^{24})}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)} \\ \mathcal{H}_{(6,3,3)} &= \frac{q^2 (1 + 4q^2 + 12q^4 + 22q^6 + 32q^8 + 32q^{10} + 24q^{12} + 8q^{14} - 4q^{16} - 10q^{18} - 8q^{20} - 4q^{22} - q^{24})}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)} \\ \mathcal{H}_{(6,3,3)} &= \frac{q^2 (1 + 4q^2 + 12q^4 + 22q^6 + 32q^8 + 32q^{10} + 24q^{12} + 8q^{14} - 4q^{16} - 10q^{18} - 8q^{20} - 4q^{22} - q^{24})}{(1 - q^2)^2 (1 - q^4)^3 (1 - q^6)^4 (1 - q^8)} \\ \mathcal{H}_{(6,3,3)} &= \frac{$$

Based on 2312.13349

Hilbert series for all d=6 MFV covariants

 $4q^{22} - q^{24}$

$$\begin{aligned} \mathcal{H}_{(\mathbf{1},\mathbf{1},\mathbf{1})} &= \frac{1+q^{12}}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(\mathbf{8},\mathbf{1},\mathbf{1})} &= \frac{2 \left(q^2+2 q^4+2 q^6+2 q^8+q^{10}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(\mathbf{1},\mathbf{8},\mathbf{1})} &= \frac{q^2 \left(1+2 q^2+3 q^4+4 q^6+4 q^8+2 q^{10}+q^{12}-q^{16}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(\mathbf{3},\mathbf{3},\mathbf{1})} &= \frac{q \left(1+2 q^2+4 q^4+4 q^6+4 q^8+2 q^{10}+q^{12}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(\mathbf{1},\mathbf{3},\mathbf{3})} &= \frac{q^2 \left(1+2 q^2+4 q^4+4 q^6+4 q^8+2 q^{10}+q^{12}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(\mathbf{1},\mathbf{3},\mathbf{3})} &= \frac{q^2 \left(1+2 q^2+4 q^4+4 q^6+4 q^8+2 q^{10}+q^{12}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(\mathbf{1},\mathbf{3},\mathbf{3})} &= \frac{3 q^4+8 q^6+17 q^8+20 q^{10}+19 q^{12}+8 q^{14}-q^{16}-8 q^{18}-7 q^{20}-q^{16}}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(\mathbf{1},\mathbf{3},\mathbf{1})} &= \frac{q^4 \left(1+6 q^2+7 q^4+8 q^6+4 q^8-3 q^{12}-2 q^{14}-q^{16}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \\ \mathcal{H}_{(\mathbf{1},\mathbf{1},\mathbf{3},\mathbf{3})} &= \frac{q^6 \left(2+3 q^2+6 q^4+7 q^6+6 q^8+2 q^{10}-3 q^{14}-2 q^{16}-q^{18}\right)}{\left(1-q^2\right)^2 \left(1-q^4\right)^3 \left(1-q^6\right)^4 \left(1-q^8\right)} \end{aligned}$$

- → Finitely generated (as for any linearly reductive G)
 - [Hochster+Roberts, 74]

- → Denominator → primary invariants
- → Numerator with negative coef. → not free module

 - Negative terms redundancies (no basis)
 - No common factor (1+q¹²)

Rank saturates for all MFV representations

$$\operatorname{rank}\left(_{r_{\operatorname{Inv}}}\mathcal{M}_{R}^{G_{F},Y_{u},Y_{d}}\right) = \dim(R)$$

Rank saturation for MFV

→ Rank saturates for all MFV representations

$$\operatorname{rank}\left(_{r_{\operatorname{Inv}}}\mathcal{M}_{R}^{G_{F},Y_{u},Y_{d}}\right) = \dim(R)$$

→ Out of Y_u and Y_d We can build as many rep-R covariants as dimension of the representation

Also through Brion's Theorem:

$$G_f = U(3)_q \times U(3)_u \times U(3)_d \xrightarrow{\langle Y_u \rangle, \langle Y_d \rangle} H = U(1)_{BN}$$
.
 $\operatorname{rank}\left(\mathbb{I}_{\operatorname{Inv}} \mathcal{M}_{R_{\operatorname{MFV}}} \right) = \dim\left(R_{\operatorname{MFV}}^H \right) = \dim\left(R_{\operatorname{MFV}} \right)$

Rank saturation for MFV

→ Rank saturates for all MFV representations

$$\operatorname{rank}\left(_{r_{\operatorname{Inv}}}\mathcal{M}_{R}^{G_{F},Y_{u},Y_{d}}\right) = \dim(R)$$

- → Out of Y_u and Y_d We can build as many rep-R covariants as dimension of the representation
- → Ex. (27, 1, 1) covariants $C_{pqrs} \left(\bar{q}_p \gamma_\mu q_r \right) \left(\bar{q}_s \gamma^\mu q_t \right)$ rank $\left(r_{Inv} \mathcal{M}_{(27,1,1)}^{G_F,Y_u,Y_d} \right) = 27 \implies \exists \{ V_i^{(27,1,1)} \}_{i=1}^{27}$ independent covariants Any $C_{pqrs} \sim \sum_{i=1}^{27} a_i V_i^{(27,1,1)}$

Also through Brion's Theorem: $G_f = U(3)_q \times U(3)_u \times U(3)_d \xrightarrow{\langle Y_u \rangle, \langle Y_d \rangle} H = U(1)_{BN}$. $\operatorname{rank} \left({}_{\mathbb{\Gamma}_{\operatorname{Inv}}} \mathcal{M}_{R_{\operatorname{MFV}}} \right) = \dim \left(R_{\operatorname{MFV}}^H \right) = \dim \left(R_{\operatorname{MFV}} \right)$

Rank saturation for MFV

→ Rank saturates for all MFV representations

Also through Brion's Theorem: $G_f = U(3)_q \times U(3)_u \times U(3)_d \xrightarrow{\langle Y_u \rangle, \langle Y_d \rangle} H = U(1)_{BN}$. $\operatorname{rank}\left(_{\mathbb{F}_{\mathrm{Inv}}}\mathcal{M}_{R_{\mathrm{MFV}}}\right) = \dim\left(R_{\mathrm{MFV}}^H\right) = \dim\left(R_{\mathrm{MFV}}\right)$

The MFV symmetry principle does not restrict the EFT

MFV SMEFT \equiv SMEFT.

Note: It is not obvious. This does not hold for smaller number of building blocks (e.g. only Y_u).

ariants

 q_t)

Quo vadis MFV?

- → Still is a good guiding principle organizing different contributions
- → "Physics lies in the extra assumptions"
 - Y_{u,d} as order parameters
 - Only Y_d as order parameter
 - Only Y_u as order parameter

Expanding a order k, the Hilbert series tells you how many structures there are.

Quo vadis MFV?

- → Still is a good guiding principle organizing different contributions
- → "Physics lies in the extra assumptions"
 - Y_{u.d} as order parameters
 - Only Y_d as order parameter
 - Only Y_u as order parameter

Expanding a order k, the Hilbert series tells you how many structures there are.

• One operator at a time: ratios of different observables O_1/O_2 may be able to distinguish among the covariants of the generating set. Currently exploring the pheno.

Quo vadis MFV?

- → Still is a good guiding principle organizing different contributions
- → <u>"Physics lies in the extra assumptions"</u>
 - Y_{u.d} as order parameters
 - Only Y_d as order parameter
 - Only Y_u as order parameter

Expanding a order k, the Hilbert series tells you how many structures there are.

- One operator at a time: ratios of different observables O_1/O_2 may be able to distinguish among the covariants of the generating set. Currently exploring the pheno.
- → No assumption. In terms of finding an origin of flavor it may be useful to use these generating sets as a parametrization of any flavor operator.

Conclusions

- Hilbert series are really useful tools to count not only invariants but also covariants. \rightarrow
- The set of rep-R covariants form a module over the ring of invariants (finitely generated...) \rightarrow
- Rank saturation \rightarrow
- Application to MFV: we computed all HS for d=6 MFV SMEFT \rightarrow
- The rank of all of the reps saturates \rightarrow MFV SMEFT \equiv SMEFT. \rightarrow

- Physics lies on the extra assumptions (not the MFV symmetry principle). \rightarrow
- Outlook: alternative MFV EFTs, other spurion analysis, OPEs, form factors, amplitudes... \rightarrow

Based on 2312.13349

Back up slides

SMEFT

 \rightarrow field content + symmetries \Rightarrow Lagrangian

$$\mathcal{L}_{\rm SMEFT} = \mathcal{L}_{\rm SM} + \sum c_i \mathcal{O}_i$$

 \rightarrow At dimension d=6

[Buchmuller+Wyler, 86] [Grzadkowski et al, 10] [Alonso et al, 13]

For $n_g = 1$, \exists **59** ops \longrightarrow For $n_g = 3$, \exists **2499** ops Simplifying flavor assumption?