# NIM to TTL, TTL to NIM,

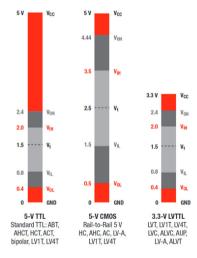
— etc, etc, ... —

Michael Wiebusch

GSI EEL - AESD

20.03.2024

## Motivation


### The old problem

- Nuclear physics instrumentation often NIM inputs/outputs (LEMO jacks)
- interface it with general purpose devices often with TTL inputs/outputs
- Experiment groups have old converter modules, some from the 70s ... and they're falling apart so these people come to us
- You can buy new modules from the usual vendors but they cost a fortune
- We want to implement our own NIM/TTL IO into our modules



www.caen.com

# TTL, LVTTL, CMOS



### What is "TTL"?

- Transistor Transitor Logic
- Voltage signal driver sends defined voltage into an undefined (high) impedance
- Used for IC to IC communication
- misused for device to device communication
- Compare variants: TTL (5V), LVTTL (3.3V) and LVCMOS (3.3V)
- TTL and LVTTL  $\rightarrow$  same  $V_{th} = 1.5V$
- CMOS logic has  $V_{th}$  at VCC/2
- 3.3V CMOS and 3.3V LVTTL compatible

Figure: Texas Instruments Logic Guide 2017

Michael Wiebusch

#### What is NIM?

- Nuclear Instrumentation Module
- Current signal a defined current (16 mA) into a defined impedance (50R, LEMO jacks)
- Used for device to device communication over several meters of 50R lab cables
- • Negative polarity. Logic HI = -0.8V in 50R, Logic LO = 0V
- Negative? Yeah, logic signal intended comparable/compatible with a decent PMT pulse
- In NIM crate you always get -6V for free, so negative logic is not an issue





### TTL/NIM in 50R

- assume driving constant **HI** into line termination remember: I = U/R,  $P = U^2/R$
- $\bullet$  TTL 5V,50R  $\rightarrow$  100 mA, 500 mW
- $\bullet$  LVTTL 3.3V,50R  $\rightarrow$  66 mA, 218 mW
- LVTTL 2.5V,50R  $\rightarrow$  50 mA, 125 mW
- NIM -0.8V,50R  $\rightarrow$  16 mA, 12.8 mW !

## Best of both worlds

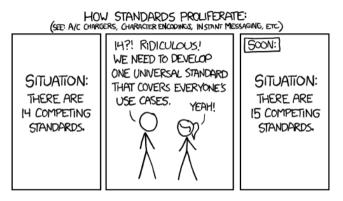
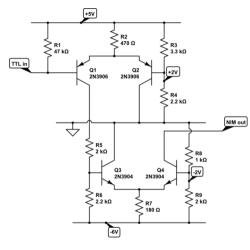




Figure: xkcd.com

- I propose positive logic NIM :)
- HI = +0.8V in 50 R
- Technically best solution works with no existing equipment
- Better not ...

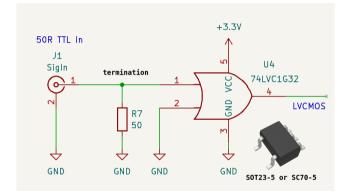
Michael Wiebusch

## oldschool NIM driver/receiver example

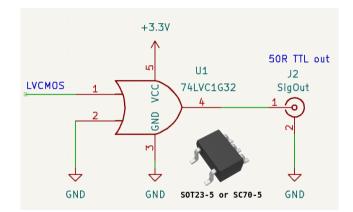


#### Figure:

https://electronics.stackexchange.com/questions/456969/ttl-to-nim-logic-translation-logic-gate-issue


#### legacy tech

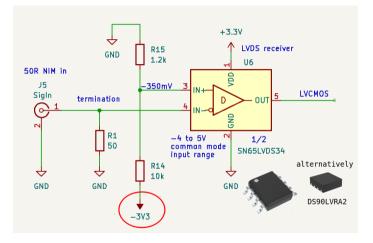
- "oldschool example" of a NIM driver
- uses discrete BJT transistors
- negative power comes from NIM crate -6V
- draws significant current when idle
- asymmetric reaction to rising/falling edges
- we don't need to build it like this anymore



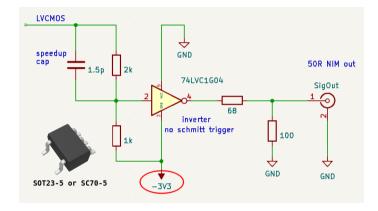

- If we have a circuit for all four cases ...
- ullet ... we can build all sorts of active converters and I/O on our own boards
- If possible compact/cheap/reliable/reusable building blocks
- easy to power with e.g. a single 5V source
- something you could give to a colleague

# TTL to LVCMOS

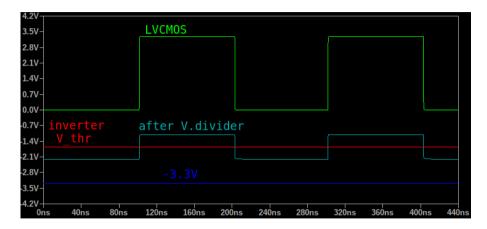



- Okay, that was trivial
- $V_{th} = VCC/2$
- TTL/LVTTL is compatible with LVCMOS anyway




• Pretty easy as well. Driver output only reaches 2.5V in 50R, but complies with TTL and LVTTL levels!

• Edges are nice and steep ( $\leq 800 ps$ )

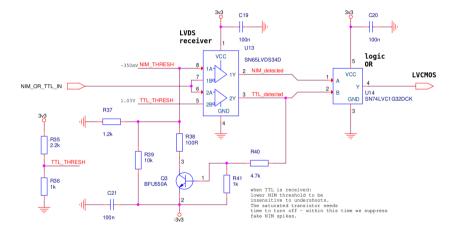

### NIM receiver



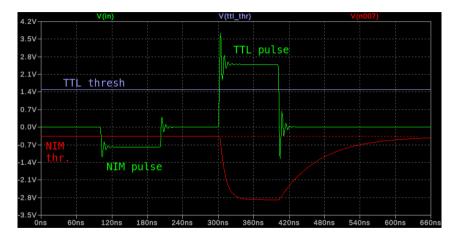
• Use LVDS receiver as comparator/inverter with negative threshold



• speedup cap and inverter input cap ( $\approx 3pF$ ) build a (capacitive) 1:2 voltage divider, too

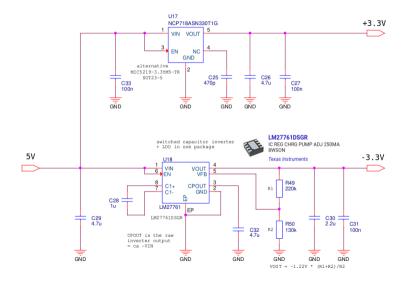



• both resistive and capacitive divider achieve level conversion while preserving edge steepness



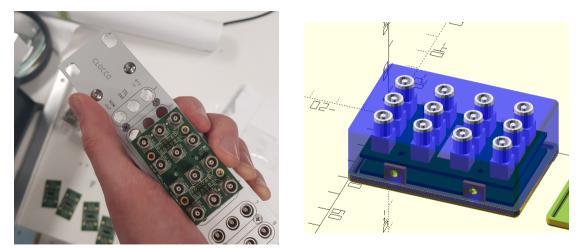

- No pulse width distortion
- both, rising and falling edges are steep, for NIM and TTL

### NIM/TTL combo receiver - with undershoot rejection




• Remember: LEMO Jacks are more expensive than ICs :)



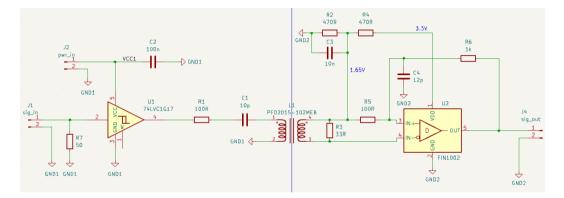

• an additional transistor helps ignoring ringing/fake NIM pulses

## -3.3V power rail from a charge pump



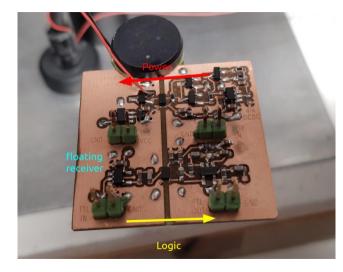
- where do I get my negative power from?
- charge pump LM27761
- switched capacitor, no coil, low EMI
- includes -3.3V LDO
- easily powers at least four NIM drivers
- low cost,  $1.5 \in$  in single qty
- alternatively LM27762 has neg AND pos LDO

## The finished stand-alone product



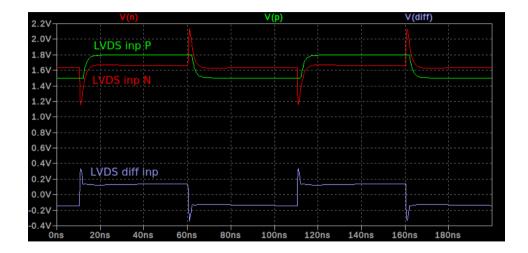

• Either 20 ch in 19" Rack, or a 4 ch module powered by USB

### That's all


• Thank you

### Bonus: Galvanic Decoupler - work in progress




- LVTTL over a gap
- works like a charm
- pulse lengths from 3ns to seconds, edge precision  $\leq 20 ps$
- transmits clocks up to 200 MHz

## Galvanic Decoupler - the demonstrator



|  | ebusch |  |
|--|--------|--|
|  |        |  |
|  |        |  |

| 1.0V  |            | V       | (a)          |      |             |             | V(      | (b)   |       |
|-------|------------|---------|--------------|------|-------------|-------------|---------|-------|-------|
| 0.9V  |            |         |              |      | l<br>I<br>I |             |         |       |       |
|       |            |         |              |      |             |             |         |       |       |
| 0.8V  |            |         |              |      |             |             |         |       |       |
| 0.7V  | floating   | CMOS    |              |      |             |             |         |       |       |
| 0.6V  | receiver   |         |              |      |             |             |         |       |       |
| 0.5V  |            |         |              |      |             |             |         |       |       |
| 0.4V  |            |         |              |      |             |             |         |       |       |
| 0.3V  |            |         |              |      |             |             |         |       |       |
| 0.2V  |            |         |              |      |             |             |         |       |       |
| 0.1V  |            |         |              |      |             |             |         |       |       |
| 0.0V- | ┛╰ <u></u> | <u></u> |              |      |             | <u>ا</u> کر | <u></u> |       |       |
| -0.1V | voltage    | at      | }/           |      |             |             |         |       |       |
| -0.2V | primary    |         |              |      |             |             |         |       |       |
| -0.3V |            |         |              |      |             |             |         | {     |       |
| -0.4V |            |         | ····· }/···· |      |             |             |         |       |       |
| -0.5V |            |         |              |      |             |             |         | Y     |       |
| Ons   | 20ns       | 40ns    | 60ns         | 80ns | 100ns       | 120ns       | 140ns   | 160ns | 180ns |

