Ideas for alternative Cavity Geometries for ≥ MHz GWs

Tom Krokotsch

Upper Limits for GW-Cavity Coupling

Coupling Coeff. of GW to vibration with displacement field $\xi^i(x)$

Plus Polarization: $\Gamma_+ = \Gamma^{11} - \Gamma^{22}$

Cross Polarization: $\Gamma_{\times} = \Gamma^{12} + \Gamma^{21}$

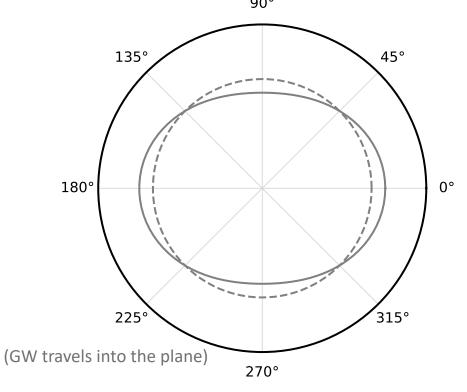
Cavity Wall Density

Can show in general (for GWs in z direction):

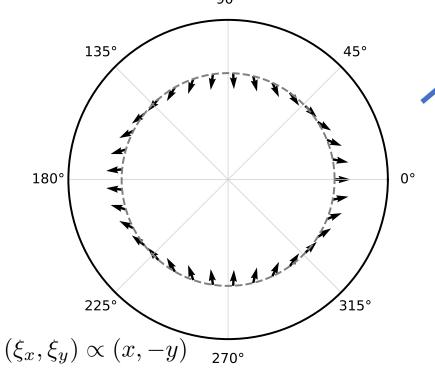
$$\Gamma^{ij}h_{ij} \leq rac{1}{V^{1/3}}\sqrt{rac{1}{M}}\int_V d^3x\,
ho(m{x})\,(x^2+y^2)$$
 • For sphere:

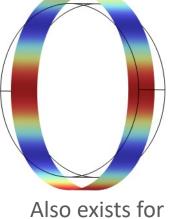
$$\bullet$$
 For hollow cylinder: $\Gamma_{+, imes} \leq rac{R}{V^{1/3}}$

$$\Gamma_{+,\times} \le \sqrt{\frac{2}{3} \frac{R}{V^{1/3}}} \approx 0.82 \frac{R}{V^{1/3}}$$

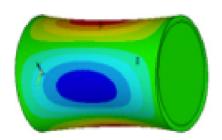


The ξ that maximizes $\Gamma_{+,\times}$ needs $(\xi_x,\xi_y)\propto (x,-y)$ \to Exists for a cylinder without ends

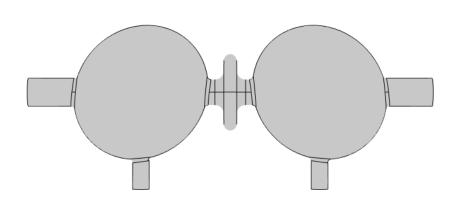

⇒ Cylindrical cavities can couple stronger to GWs than spheres (but are directional)


Cylinders Match GW Quadrupole Pattern

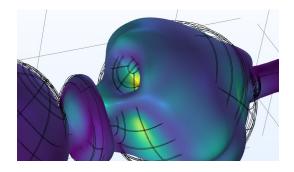
Effect of a GW on a circle of test masses


Lowest Vibrational Quadrupole Mode of a Ring

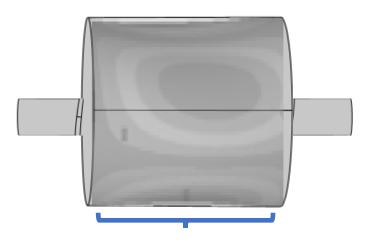
Also exists for longer cylinders


Quadrupole mode of closed cylinder looks more like this:

→ Slightly worse coupling


A MAGO-sized cylinder (R=0.1 m, L=0.4 m) has $\Gamma_{+,\times} \approx \Gamma_{+,\times}^{MAGO} \approx 0.5$

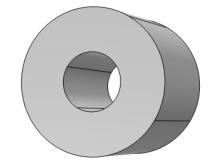
Cylinders have more predictable vibrations

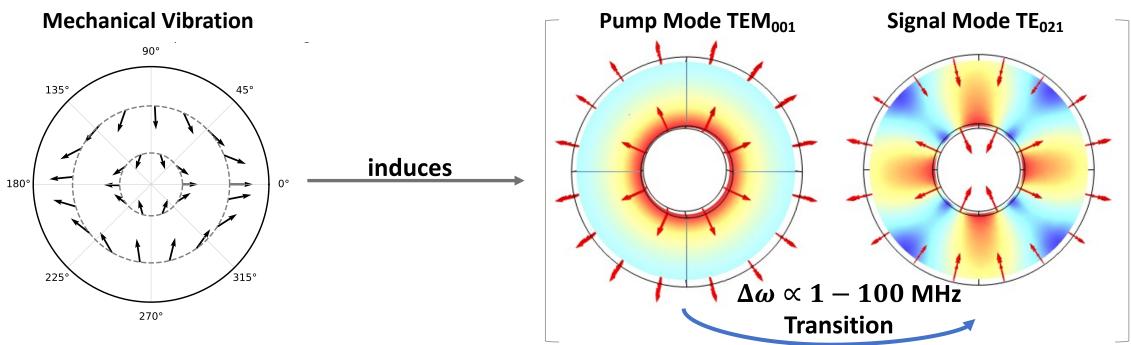


Pure quadrupole vibration does not exist due to complicated shape

Remember:

Predicting precise Vibrations of Cavity + Flanges is nearly impossible




Main Body could still oscillate freely despite connections

→ More control over vibrational modes of cavity

MHz EM-Mode Transition for Modified Shape

The quadrupole vibration induces **no strong** EM-mode transition in a cylinder Cutting out a cylinder in the middle **does** gives us a good mode pair

EM-Mechanical Coupling Coefficient: $C_{01} \approx 0.8$ (preliminary result),

 $\Gamma_{+, imes}pprox rac{R}{V^{1/3}}$ still holds for inner & outer cylinder

Further thoughts

- Isolate the inner cylinder from the outer one
 - → Reduced vibrational noise, (mostly) freely oscillating cylinder
 - → Inner cylinder could be used to tune the resonant frequencies
- Round off edges to prevent strong fields
- Consider other geometries with 'holes' e.g. ellipsoids, doughnuts, ...

