
Karabo Developer Workshop:
Writing (and Maintaining) a Middlelayer Karabo Device

Gero Flucke

Controls Group

Schenefeld, March 1st, 2024

2Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Python asyncio as Foundation of the Karabo Middlelayer API

This tutorial is about writing a Karabo device using the Middlelayer (MDL) API

MDL is written in Python,

Largely relying on the advanced asyncio package – main take away:

► coroutines, declared with async def asyncFunction(..):

► to directly execute them, call with await asyncFunction(arguments)

• (for experts: or use gather, allCompleted, background, etc.)

►Technically, this allows cooperative multi-tasking in a single thread:

at any await, other code can be executed before your coroutine continues

Note that also macros are based on MDL, but hide the async nature

“Synchronised coroutines” (a Karabo feature of many Karabo methods)

► just work without await if used in a normal method (i.e. not in a coroutine),

► but if used in a coroutine, the await has to be added

(Caveat when converting a macro to a device!)

3Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Karabo Middlelayer Device Basics

A Karabo MDL device is a class inheriting from karabo.middlelayer.Device

also other MDL classes and function should be imported from karabo.middlelayer

►Do not mix with karabo.bound_api!

The simplest way to add a property is by adding something like this to the class:

propertyName = PropertyType(attribute1=aValue, attribute2=anotherValue, …)

►Property types are e.g. String, Double, Int64, VectorBool, …

► In this tutorial we will touch these attributes: displayedName, description,

defaultValue, allowedStates, accessMode, unitSymbol, metricPrefixSymbol

E.g. myString = String(accessMode=AccessMode.READONLY, defaultValue=“Text”)

A slot is a coroutine with the @Slot decorator – the decorator can take attributes, e.g.

4Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Selected Middlelayer Device Members

def __init__(self, config): If implemented, do not forget super().__init__(config)

async def onInitialization(self):

called once the device is up and participating in communication

use to connect to hardware or remote devices

self.state property: any of State.UNKNOWN, State.INIT, ...ON,...OFF,...MOVING,...

governs the state machine restrictions, i.e. what can/cannot be done when

self.status, a String property to convey information to the operator via Text Log widget of the GUI

self.logger.[info|warn|error](“message”)leaves message with timestamp etc. in log file

A note on setting properties:

self.property = value does not immediately publish the update.

►Done at next await

But even if self.property is identical to value, a message is sent!

►Often one may not want that, i.e. better check against equality before setting

5Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Selected Tools for Interaction with Other Devices

dev = await connectDevice(remoteDeviceId):

an always up-to-date proxy to the remote device

to access remote device properties: remoteValue = dev.remoteProperty

to set remote properties: dev.remoteProperty = newValue

► note again: message to actually set the property is not sent immediately, but at next await

to call remote slot, e.g. await dev.move()

Lighter variant (not always up-to-date): await getDevice(remoteDeviceId)

await waitUntilNew(dev.state, dev.propertyA, dev.propertyB, …):

wait until any of the given properties has a new value

await waitUntil(function):

wait until the given function (e.g. lambda) containing remote device properties returns True

E.g. await waitUntil(lambda: dev.state == State.ON)

6Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Documentation

If you want a deeper insight into coroutines and await: Read Python asyncio documentation

https://docs.python.org/3.11/library/asyncio-task.html

Middlelayer how-to documentation:

https://rtd.xfel.eu/docs/howtomiddlelayer/en/latest/chap1/intro_device.html

https://rtd.xfel.eu/docs/howtomiddlelayer/en/latest/chap2/intro_device_proxies.html

7Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Development Tools and Procedures

Uniform coding style eases code readability and thus serves maintainability

We use flake8 and isort

Our git/GitLab development cycle for any new feature, bug fix or first implementation: (skip)

Start development by creating new branch from main branch: git checkout –b newBranch

Local git add changed_or_new_file.py and git commit

Push to GitLab: git push origin newBranch

Create “Merge Request” (MR) in GitLab (https://git.xfel.eu)

►Should trigger tests of package (“Continuous Integration”, CI) in GitLab

Code review via GitLab (https://git.xfel.eu)

► probably iterate with further push and review

Once review receives LGTM (“looks good to me”): merge via GitLab interface

Go back to main branch and pull the updates

►git checkout main

►git pull --prune --tags

Only tagged versions should be deployed (format: MAJOR.MINOR.PATCH, e.g. 2.19.3)

8Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-On

Part 1

9Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Developing a Karabo Device: Prerequisites
What you need:

A running Karabo installation

►Not a production installation!

►Best is a local standalone one as in our VISA virtual machine.

A running Karabo GUI

A command line terminal with a Linux shell

An editor (vscode, PyCharm, emacs, gedit, vim, …)

For version control, a git installation is needed

►Best with access to our EuXFEL GitLab https://git.xfel.eu/

First steps in terminal (not now!)

source ~/karabo/activate (in each new shell)

karabo-start (to start various Karabo servers)

Some code to start with

►Create package from scratch (not now): karabo new thePackageName middlelayer

►Or start from an existing one (already done in the virtual machine):

karabo develop –b 1_initHello karaboWorkshop

10Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Command Line Tools for an Activated Karabo Environment (Skip!)

karabo-check

karabo-start mdlServer/session2_a (starts single server)

karabo-start (no argument: acts on all servers)

karabo-add-deviceserver mdlServer/session2_c middlelayerserver

►Creates new (middlelayer) server

Other commands:

►karabo-stop (for clean shutdown of all servers)

►karabo-kill –t <serverId> (for clean shutdown and restart of one)

e.g. karabo-kill –t mdlServer/session2_a

►karabo-kill –k <serverId> (to ‘kill -9’ a hanging process)

11Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

cd ~/karabo/devices/karaboWorkshop

git checkout <XXX>

Restart mdlServer/session2_a

►Via karabo-kill -t mdlServer/session2_a in a terminal with activated Karabo

►Or via GUI

Start KARABO_TEST/MDL/HELLO_WORLD from project SESSION2 (database WORKSHOP)

Try out

Repeat until happy:

►Edit: ~/karabo/devices/karaboWorkshop/src/karaboWorkshop/HelloWorld.py

►Restart mdlServer/session2_a

►Start device again from project

►Try out

git diff <XXX>_done to compare with my solution

git stash to hide your code, but keep it available

git checkout <YYY>

Try out, edit code, …

General Procedure for this Tutorial (Skip!)

12Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on in VISA: Start Our First Device

Do now in command line shell:

Note: all commands are attached to session in indico to copy/paste

source ~/karabo/activate

cd ~/karabo/devices/karaboWorkshop/

Sorry - please fix up the installation (see session2_copypaste.txt attached to hands-on):

►git tag –d 1_initHello

►pip install -e .

►git tag 1_initHello

Open file in editor, e.g. via visual studio code (just click “Yes I trust…” and “Install” if these pop up)

►code .

► navigate to edit src/karaboWorkshop/HelloWorld.py

Optional: karabo-xterm mdlServer/session2_a

to see log files

►Some bugs prevent that the device starts,

but show up only in these logs

karabo-start

13Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on in VISA: Start Our First Device

Now use GUI:

Start GUI from icon, connect to localhost:44444

Open project SESSION2 (from database CAS_INTERNAL)

Start KARABO_TEST/MDL/HELLO_WORLD

Press execute hello slot in Configuration editor

►Watch how greeting property changes

14Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on: The Device Code

This is the skeleton – almost as you get it from

the templates via karabo new helloWorld …

You will now work on your own

Extend HelloWorld.py in three exercises.

Then follow more exercises on a

MotorProcedure.py.

Raise your hand if you need help.

To get your code changes active, save and

shutdown mdlServer/session2_a

Not all code needs to be typed by you:

All steps are prepared for you via tags

►git checkout <someTag>

► if it complaints since you edited changes:

first do git stash

►git diff <aTag> <nextTag>

15Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on: Property and Slot with Attributes

It is good practice to

make properties and slots appear in GUI as full, capitalized words,

add a description,

provide defaults where it makes sense.

Exercise:

Add displayedName, description attributes to property and slots and defaultValue for property

Simple hands-on (just to warm up):

git checkout 2_decorate

See how all but displayedName for slot hello is achieved

►E.g. git diff 1_initHello 2_decorate

Start device again and try out (Do not forget to restart the server!)

Edit HelloWorld.py

Add the missing displayedName (e.g. “Hello Procedure”) for slot hello

In doubt, git diff 2_decorate 2_decorate_done shows what to do

Try out the device after your changes!

16Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on: State Handling for Slots

Karabo devices should be in a well defined state

UNKNOWN (the default) means: lost contact to resources, e.g. hardware

The device base class defines self.state variable

►Predefined (long…) list: State.ON, State.OFF, State.MOVING, State.ERROR, …

Depending on its state, actions on the device are allowed or not

Exercise:

Set device to OFF (or ON) in the beginning

Add slots off and on that switch to the corresponding states OFF and ON

►But define allowedStates such that off slot can only be called if in ON state and vice versa

►Also hello slot should only be callable in ON state

See how that is achieved for all but the on slot

►E.g. git diff 2_decorate_done 3_states

Hands-on:

git checkout 3_states (if git complains since you edited: git stash before)

Restart device, try out and add the missing on slot (Do not forget to restart the server!)

In doubt, git diff 3_states 3_states_done shows what to do

17Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on: Reconfigurable Properties with State Handling

So far, our property greeting could only be set from inside device code (since READONLY)

Exercise:

explicitly mark greeting as reconfigurable at run time

(that would have been the MDL default…),

but only if in state OFF

Hands-on:

See how making it reconfigurable is achieved

►E.g. git diff 3_states_done 4_reconfig

git checkout 4_reconfig (git stash before?)

Try out and add the restriction of the OFF state

In doubt, git diff 4_reconfig 4_reconfig_done shows what to do

18Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-On

Part 2

19Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

More on States and Slots

So far, our slots did not do much:

Their execution did not take long

and therefore their success (or failure) was quickly reported to the GUI (or whoever called them)

A procedure is different by nature:

First do something, then another thing, then wait a bit and finally do a third thing, …

If all this is directly programmed into a slot, it would time out

►For @MacroSlot used in macros, the timeout is essentially swallowed

 Longer procedures (even like simple motor movement) have this pattern in Karabo:

A slot only triggers the procedure, i.e.

► switches to some “*ING” state (e.g. MOVING, PROCESSING, CHANGING, STARTING, …)

► and triggers the procedure, i.e. in MDL puts it into the background

If procedure done, leave “*ING” state again

►Often to the state in which the slot can again be executed

20Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on: Simple Motor Procedure

Exercise:

A new MotorProcedure device in

~/karabo/devices/karaboWorkshop/src/karaboWorkshop/MotorProcedure.py

Its slot moveMotor

► connects to another device,

► sets its targetPosition,

► lets it move,

► and waits until motor movement is done (i.e. motor not in State.MOVING anymore)

Hands-on:

Start device KARABO_TEST/MOTOR/X from project SESSION_2

Look at source code and the interplay between slot moveMotor and method motor_procedure

Add the three missing steps and try out (tip: await waitUntil(…))

►You may monitor a bit what goes on with the scene SteerMotor

(not everything on the scene is already available)

In doubt, git diff 4_reconfig_done 5_simple_done shows what to do

21Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on: Monitoring Another Device

A device may want to constantly monitor another device and react on changes

Exercise:

Extend the MotorProcedure device:

► add a Double property distanceToTarget

► add a coroutine monitor_task()

► put that into the background (in onInitialization)

monitor_task should

► connect to the motor device,

►whenever its targetPosition or actualPosition change, assign the difference to distanceToTarget

Hands-on:

git checkout 5_simple_done

Try to implement this (tipp: await waitUntilNew(..))

In doubt, git diff 5_simple_done 6_monitor_done shows what to do

► or just git checkout 6_monitor_done, try out and investigate

22Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on: Extend Motor Procedure to Three Steps

So far we just moved the motor

Could have done using the motor directly.

Now let’s have more steps in our procedure!

Exercise:

Extend to the motor_procedure() to

► cache actualPosition and targetVelocity of the motor,

► after first movement, sleep 5 seconds, move back at half speed, reset targetVelocity

► (Extra: inform operators about what is going on by updating self.status)

Hands-on:

git checkout 6_monitor_done

Try to implement exercise

In doubt, git diff 6_monitor_done 7_3steps_done shows what to do

► or just git checkout 7_3steps_done, try out and investigate

23Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on: Cancel a Procedure

While a long running procedure executes, you may notice that things go wrong

We need something to cancel the procedure!

Exercise:

The background actually returns a future with that one can handle an ongoing procedure

Keep track of that in a member variable (e.g. self.task)

Add slot cancelMoveMotor that

► has the proper allowedStates

► calls cancel() of the future (and resets the holding the variable)

► resets the state of the MotorProcedure to State.ON

► (Extra: inform operators about cancellation by updating self.status)

Hands-on:

git checkout 7_3steps_done

Try to implement this

In doubt, git diff 7_3steps_done 8_cancel_done shows what to do

► or just git checkout 8_cancel_done, try out and investigate

24Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on: Make the Cancel Clean

Did you notice:

When we cancel our procedure while the motor moves, the motor just goes on!

If we cancel when moving back at half speed, the actualVelocity stays at half speed

Exercise:

Cancelling a future actually injects an asyncio.CancelledError, so better

► protect the procedure with try:,

► use finally: to do everything that needs to be cleaned-up (no matter if cancelled or not),

► in except CancelledError: take care that motor stops

Caveat: if cancelled while we sleep, motor cannot be stopped since not moving!

Hands-on:

git checkout 8_cancel_done

Try to implement this

In doubt, git diff –b 8_cancel_done 9_cancelClean_done shows what to do

• ‘-b’ ignores changes of whitespace

► or just git checkout 9_cancelClean_done, try out and investigate

25Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on: Basic Testing as Good Developer Practice

A device is something long lived and probably will be developed further

How to make sure that a new feature does not break an existing one that you carefully tested?

You tested with the current Karabo version (and that of other libraries).

►How to ensure that newer versions do not break your code?

Exercise:

Automated test procedures are needed!

► tests should reside in …/src/karaboWorkshop/tests

►We use the pytest and the “continuous integration” (CI) of GitLab

Hands-on:

git checkout 9_cancelClean_done

Have look at …/tests/test_helloworld.py

► It is close to what karabo new … creates for you

pytest src/karaboWorkshop/tests/

git checkout 10_withTests_done and see how …/tests/test_motorProcedure.py tests

basics of the procedure

► In practice, it is tough to fully test procedurse since interacting with other devices…

26Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

Hands-on: Cancellation Still Has Loop Holes

Did you try to shutdown the motor during the procedure?

During the first movement?

During the sleep?

During the second movement?

Exercise:

Make use of the feature that dev.state will become State.UNKNOWN if the device behind proxy

dev shuts down.

But since that is also a valid state for a device, check isAlive(dev)to take care of the device

shutdown

Hands-on:

Do on your own now…

27Karabo Developer Workshop: Writing a Middle-Layer Karabo Device Gero Flucke, Controls Group, March 1st, 2024

THE END:

ENJOY YOUR

LUNCH BREAK

