
Handling Fast Data through Pipelines
Karabo Developer Workshop 2024

Raul Costa
Controls Group

Schenefeld, March 1st, 2024.

2Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Outline

Introduction: Pipelines and their uses (~ 5 minutes)

Hands-On Exercises (remaining time)

3Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Introduction – Pipelines and their Uses

Karabo data can be split in 2 categories: Slow Data
and Fast Data.

Slow Data refers to message exchanged with broker
(AMQP) intermediation. Examples: devices
configurations and events (instantiations, shutdowns,
state changes). By default persisted by the Data
Loggers (Influx)

Fast Data refers to data that is sent directly from one
device to another without the “overhead” of broker
intermediation. Used when high data throughputs*
must be supported. Examples: camera images, data
collected by detectors. Saved by the DAQ when
configured on a per proposal basis.

A typical pipeline usage scenario

* small data items at high frequencies can also be considered Fast Data.

4Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Introduction – Pipelines and their Uses (continued)

Pipelines are direct TCP connections between two Karabo
devices through which Fast Data flows.

A Pipeline has two ends: the one belonging to the Data-
producing device (the Camera in the picture) is called Output
Channel; the one belonging to the Data-consuming device is
called Input Channel.

A Karabo device can have zero, one or more Output Channel(s)
and/or Input Channel(s).

The Input Channel is the “most active” end of the pipeline – it is
the end that initially establishes the connection with a given
Output Channel and also controls the data flow by informing the
Output Channel when it is ready to consume data (an Output
Channel only sends to Input Channels it knows are ready to
consume the data).

A typical pipeline usage scenario

5Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

For more information on Karabo Pipelines:

Flucke, Gero – C++ Pipelines for Karabo Device Developers, 21.10.2022 - https://syncandshare.xfel.eu/index.php/s/NgMzA5yirNsFXnW?

dir=undefined&path=%2FTrainings&openfile=9585678

Flucke, Gero – Karabo Pipeline Configurations, 14.04.2023 -
https://syncandshare.xfel.eu/index.php/s/NgMzA5yirNsFXnW?dir=undefined&path=%2FTrainings&openfile=16279716

Karabo Online Documentation – Karabo Concepts > Communications - https://rtd.xfel.eu/docs/karabo/en/latest/concepts/communication.html

Now to the Hands-On part!

https://syncandshare.xfel.eu/index.php/s/NgMzA5yirNsFXnW?dir=undefined&path=%2FTrainings&openfile=16279716

6Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Hands-On Exercises - Outline

Connect a skeleton MDL device to a simulated camera

Code Part I: Process data sent by the camera

– Step 1: Show the number of frames sent by the camera

– Step 2: Show the min, max and average of the pixels of each frame

– Step 3: Add PROCESSING and ERROR states, handle end-of-stream (optional)

Code Part II: Forward processed data via an output channel

– Step 4: Forward min, max and average of the pixels of each frame

– Step 5: Capture and forward frame timestamp (optional)

– Step 6: Forward camera acquisition cycles (end-of-stream events) (optional)

7Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Start Karabo’s Working Environment on the VISA VM

> cd ~/karabo

> source ./activate

> karabo-start

> karabo-check

[to activate and start Karabo]

> cd ~/Desktop

> ./start_karabo_gui.sh

[to launch the GUI client]

8Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Open the Karabo Device on Visual Studio Code

From the directory ~/karabo/devices/karaboWorkshop2024pipelines, run [> code .].

9Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Launch and Explore the Simulated Camera

In the VISA VM, activate the Karabo GUI Client and open the project Session_3.

Find the simulated camera device – its name is SIM_BL_SYS/CAM/CAM - and instantiate it.

Double-click on the simulate camera device node in the project tree – the scene for the camera will be displayed. This
scene will be used multiple times throughout the exercises.

In the Configuration Editor, expand the Output property of the simulated camera. This is the camera’s output channel.
Click on the Table Element button in front of the Output > Connections properties – those are the input channels
currently connected to the camera’s output channel. One connection should be present – the connection used by the
device scene to show the camera image.

Still in the Configuration Editor, expand the Output > schema property. This shows how the data the camera sends
through its output channel is structured. Take a look at the Data > Image > Pixel Data path of the schema.

10Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Instantiate the Skeleton MDL Device and connect it to the camera

Still in the project Session_3 opened in the previous step, find the device we will be working on, PIPELINE/PROC/1,
and select it (no instantiation yet).

In the Configuration Editor, check that the Input > Configured Connections property has the value
SIM_BL_SYS/CAM/CAM:output. This the ID of the simulated camera output channel, formed by the concatenation of
the DeviceID of the channel hosting device, a ‘:’, and the ID of the output channel.

Check the Output > Connections property of the simulated camera: the connection to PIPELINE/PROC/1:input
should be there. If the simulated camera scene is open, it should be also listed there (image below).

Pressing the Acquire and Stop buttons in the camera scene doesn’t do anything on our device ... not for long!

11Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Coding Part I

Process Data Sent by the Camera

12Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Step 1 – Show the number of frames sent by the camera

Issue a [> git checkout hands_on_1_initial] command from a terminal session with
/opt/karabo/devices/karaboWorkshop2024Pipelines as the current directory.

The initial version of our camera image processing device already comes with a input channel defined: the
@InputChannel decorator for the async def input coroutine defines an input channel property for the device and
establishes the coroutine as the handler for data received from an output channel.

When the input channel is connected to a camera, each frame sent by the camera will activate the input coroutine
once, passing the frame data via the data parameter. The structure of the parameter matches the schema of the
camera’s output channel. The second parameter, meta, is unused for now; I’ll be used in Step 4.

The task of this step is to add a framesAcquired property of type UInt32 to our device - the number of frames
received from the camera since the device instantiation. To test your progress, shutdown the device server of our
device on the GUI client. As soon as the device server is back, instantiate the processing device - this syncs the
running device with its latest version saved in Visual Studio Code.

[> git diff hands_on_1_initial hands_on_1_done] will display the solution for this step.

13Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Step 2 – Show the min, max, and average of the pixels values of each frame

Issue a [> git checkout hands_on_1_done] command from a terminal session with
/opt/karabo/devices/karaboWorkshop2024Pipelines as the current directory.

The method async def process_image(self, pixels) currently does nothing. It’s called from the async def
input coroutine, which sends it the pixels of the current frame sent by the camera as the value for the pixels
parameter.

The task of this step is to add the properties pixelMean (of type Double), pixelMin (of type UInt16), and
pixelMax (of type UInt16) to our device. Those properties values should be the average, minimum, and maximum
values of the pixels of the most recent frame sent by the camera. Hint: the pixels argument passed to
process_image is an object of type ndarray and has the methods min(), max(), and mean().

[> git diff hands_on_1_done hands_on_2_done] will display the solution for this step.

14Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Step 3 (optional) – Add PROCESSING and ERROR states, handle end-of-stream

Issue a [> git checkout hands_on_2_done] command from a terminal session with
/opt/karabo/devices/karaboWorkshop2024Pipelines as the current directory.

An end-of-stream event is sent by a camera when it stops acquiring images. To handle end-of-stream events, an input
channel has to declare an async input(self, output_channel_id) method decorated with @input.endOfStream.

The task of this step are:

● Add a PROCESSING state to the device to indicate that data is being received from the camera.

● Add an ERROR state to the device to indicate any error while processing data sent by the camera. Error
details should be shown in the device’s status property. Successful processing data while in ERROR state
should take the device back to PROCESSING state.

● Handle end-of-stream events from the camera by putting the device back in ON state and indicating that no
processing is taking place by showing IDLE in the device’s status property. Reset the framesAcquired
value when the camera starts a new acquisition cycle.

[> git diff hands_on_2_done hands_on_3_done] will display the solution for this step.

15Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Coding Part II

Forward Processed Data Via an Output Channel

16Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Step 4 – Forward min, max and average of the pixels of each frame

Issue a [> git checkout hands_on_4_initial] command from a terminal session with
/opt/karabo/devices/karaboWorkshop2024Pipelines as the current directory.

We start with the device already with an output channel: its data structure is defined by class DataNode (line 22),
which becomes the field data of class ChannelNode (line 39). Channel Node is then specified as the schema of
the output OutputChannel (line 91).

The task of this step is to forward the values computed for the pixelMean, pixelMin, pixelMax properties of the
device through its output channel. Hint: reinstantiate the device after shutting down its device server. Take a look at
the Output > schema > data property of the device in the Configuration Editor to see how the data must be
structured. Await for the self.output.writeData() coroutine to send the data.

[> git diff hands_on_4_initial hands_on_4_done] will display the solution for this step. The forwarded
content can be seen in the scene PIPELINE_PROC_1_OUTPUT in the same project that has our device and the
simulated camera

17Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Step 5 (optional) – Capture and forward frame timestamp

Issue a [> git checkout hands_on_4_done] command from a terminal session with
/opt/karabo/devices/karaboWorkshop2024Pipelines as the current directory.

The metadata (data about data) for the data received by an input channel is available as the second parameter of the
async def input handler coroutine – meta parameter in line 64.

The timestamp of the data received can be accessed within the input handler method as
meta.timestamp.timestamp.

The task of this step is to forward the timestamp of the data received by the input channel of our device to its output
channel. Hint: the self.output.writeData call, currently using no argument, supports a keyword parameter called
timestamp which allows specifying a timestamp for the data being written to the output channel.

[> git diff hands_on_4_done hands_on_5_done] will display the solution for this step.

18Handling Fast Data through Pipelines – Karabo Developer Workshop 2024 Controls Group, March 1st, 2024

Step 6 (optional) – Forward camera acquisition cycles (end-of-stream events)

Issue a [> git checkout hands_on_5_done] command from a terminal session with
/opt/karabo/devices/karaboWorkshop2024Pipelines as the current directory.

The task of this step is to forward any end-of-stream event received from the camera to the output channel of the
device. Hint: the output channel has a coroutine that sends an end-of-stream through the channel. For our device it
can be invoked with self.output.writeEndOfStream().

[> git diff hands_on_5_done hands_on_6_done] will display the solution for this step.

	Slide 1
	Headline
	Basics
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

