Particle Tracking with a Quantum Computer

Arianna Crippa^{1,5}, Lena Funcke², Tobias Hartung³, Beate Heinemann^{1,4}, Karl Jansen^{1,5}, **Annabel Kropf**^{1,4}, Stefan Kühn¹, Federico Meloni¹, David Spataro^{1,4}, Cenk Tüysüz^{1,5}, Yee Chinn Yap¹

¹Deutsches Elektronen-Synchrotron DESY ³Northeastern University, London ⁵Humboldt-Universität zu Berlin ²Universität Bonn ⁴Albert-Ludwigs-Universität Freiburg

Terascale workshop, 12.12.2023

Particle Physics Experiments

- **Motivation:** study Standard Model of Particle Physics + search for new physics
- Aftermath of collision/interaction between particles lets us infer the structure of the fundamental components
- As particles move through detector, it deposits energy ("**hit**") in each layer
- The path the particle takes depends on the particle's characteristic and detector
- **Goal:** Reconstruct trajectories of multiple particles from a set of hits

Challenges in track reconstruction

- Large data volume
- High density of hits
- Noise and false signals
- imperfect hardware leads to inaccuracies
- Complex trajectories

Innovative and effective track reconstruction techniques required

LUXE: Laser und XFEL Experiment

- Investigate transition from QED to strong-field QED (black holes, neutron stars)
- **Detect:** Straight positron tracks in four-layered pixel detector (no timing info)
- Challenge:
 - Large range of positrons Dense detector regions

Muon Colliders

- Next gen experiment for high-energy collisions (cleaner collisions, less background)
- Detect: range of particles with detector system (timing info)
- Challenge:
 - Large background

LUXE

- Investigate transition from QED to strong-field QED (black holes, neutron stars)
- **Detect:** Straight positron tracks in four-layered pixel detector (no timing info)
- Challenge:
 - Range of positrons
 - Dense detector regions

Muon Colliders

- Next gen experiment for high-energy collisions

- **Detect:** range of particles with detector system (timing info)
- Challenge:
 - Large background

Overview: quantum tracking project

https://doi.org/10.48550/arXiv.2304.01690

$$O(a, b, T) = \sum_{i=1}^{N} a_i T_i + \sum_{i=1}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j \quad T_i, T_j \in \{0, 1\}$$

Binary:
0: discarded
1: kept

$$O(a, b, T) = \sum_{i=1}^{N} a_i T_i + \sum_{i=1}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j \quad T_i, T_j \in \{0, 1\}$$

weigh triplets by a_i

$$O(a, b, T) = \sum_{i=1}^{N} a_i T_i + \sum_{i}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j \quad T_i, T_j \in \{0, 1\}$$

$$assign each$$
triplet pair
connectivity b_{ij}

$$\prod_{j=0}^{T_i} \prod_{j=0}^{T_j} \prod_{j=0}^{T_i} \prod_{j=0}^{$$

$$O(a, b, T) = \sum_{i=1}^{N} a_i T_i + \sum_{i}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j \qquad T_i, T_j \in \{0, 1\}$$

$$assign each$$
triplet pair
connectivity b_{ij}

$$Goal: T_i$$

$$audruget:$$

$$b_{ij} < 0$$

$$conflict: T_i$$

$$b_{ij} < 0$$

$$conflict: T_i$$

$$b_{ij} < 0$$

$$Conflict: T_i$$

$$Conflict: T_$$

- Empirically derived
- **Goal:** maximize good quadruplets and minimise conflicts
- **Ground state** of QUBO gives us our optimal set of triplets

Annealing and Gate-based Simulator: LUXE results

Gate-based Simulator: Muon collider results

 $ncy = \frac{nacks}{N_{tracks}^{generated}}$

Summary and Outlook

- Difficult tracking environments ask for new tracking algorithms
- SA, simulated gate-based and CKF show comparable performance
- QC may be leveraged for highly entangled or complex tracking problems
- ✤ Learn QUBO formulation for data directly

Experience

- QUBO entries are difficult to derive analytically or empirically
- Learn encoding from data directly
- QUBOs can be used for all problems that can formulated as a binary decision

Learned QUBO encodings: Results

Thank you!