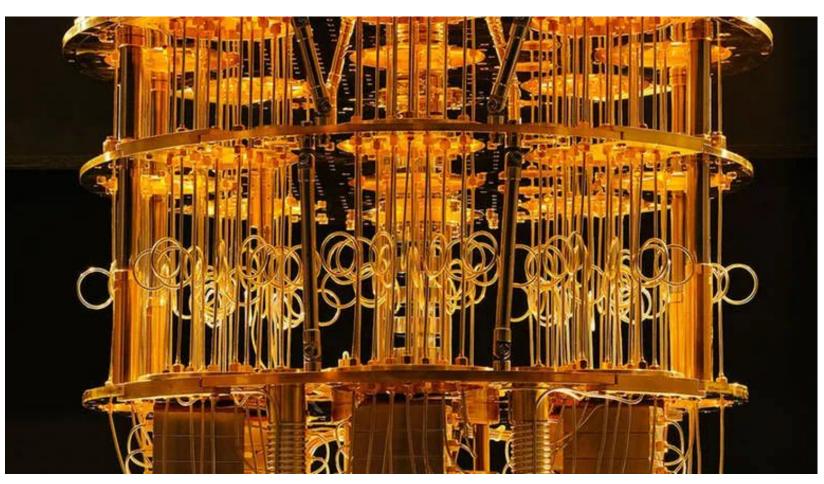
Feature Talk: Quantum Computing



FTX Meeting

David Spataro 23/1/2024

HELMHOLTZ

Source: [1]

Applications

- Polynomial-Time Algorithms
- Search

• • •

• Optimisation

- Cryptography
- Climate Science
- Drug Discovery and Materials Science
- Machine Learning and Al
- Finance

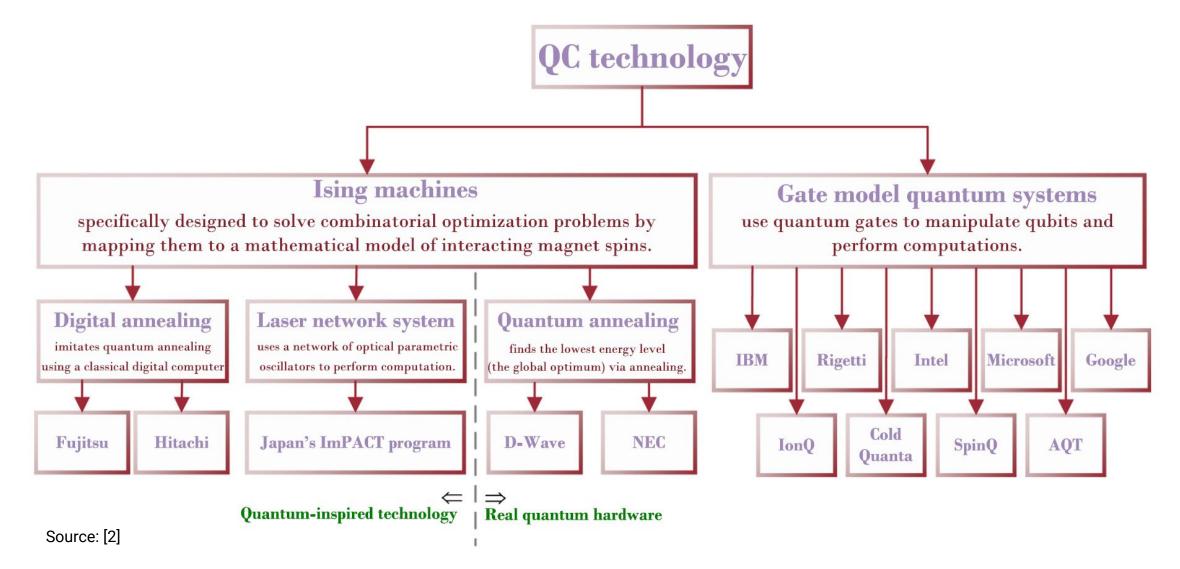
...

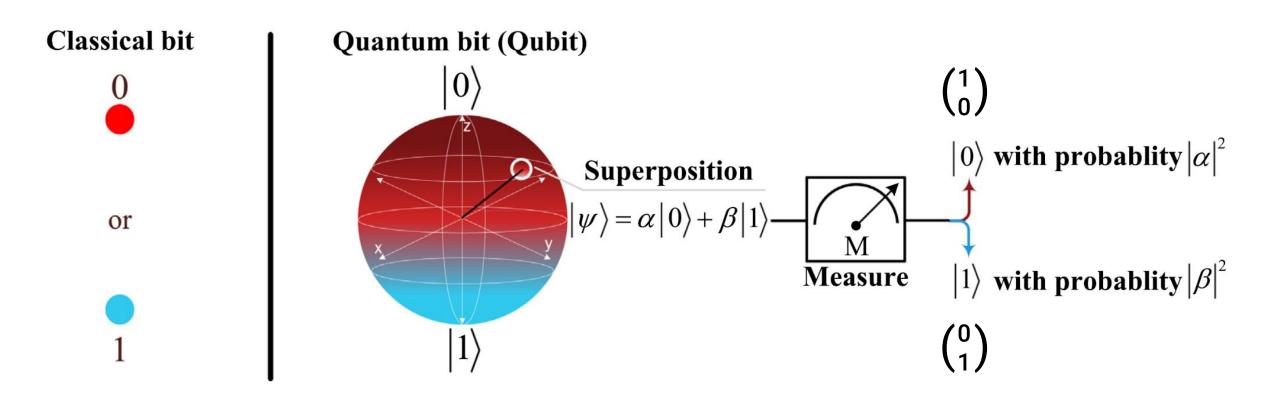
• Quantum Computing in HEP

- \rightarrow Shor
- \rightarrow Grover
- \rightarrow Variational Quantum Eigensolver, Annealing, ...

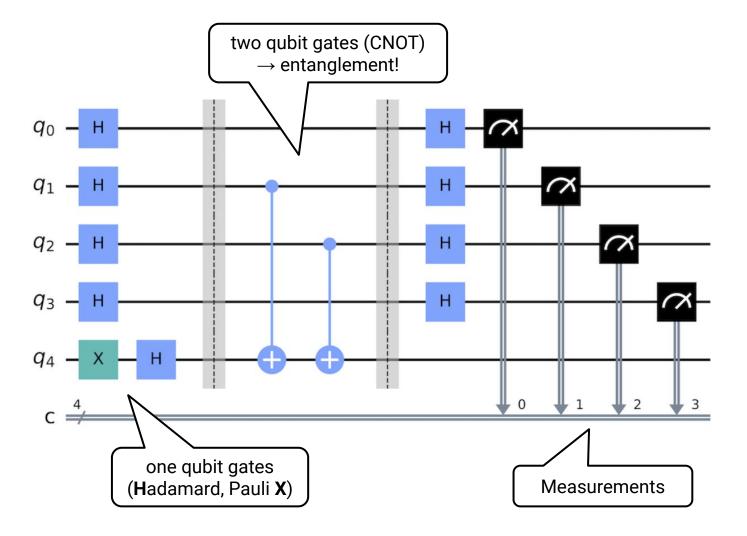
- \rightarrow Quantum Key Distribution
- \rightarrow Weather forecast
- \rightarrow Protein folding, batter development
- \rightarrow Quantum (enhanced) Machine Learning
- \rightarrow Portfolio optimisation
- \rightarrow Lattice Gauge Theories, reconstruction algorithms, simulation, ...

Technologies





Quantum circuits



Operator	Gate(s)	Matrix
Pauli-X (X)	- X -	 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	- Y -	$egin{bmatrix} 0 & -i\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$-\mathbf{Z}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$
Phase (S, P)	- S -	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	- T -	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

Source: [3]

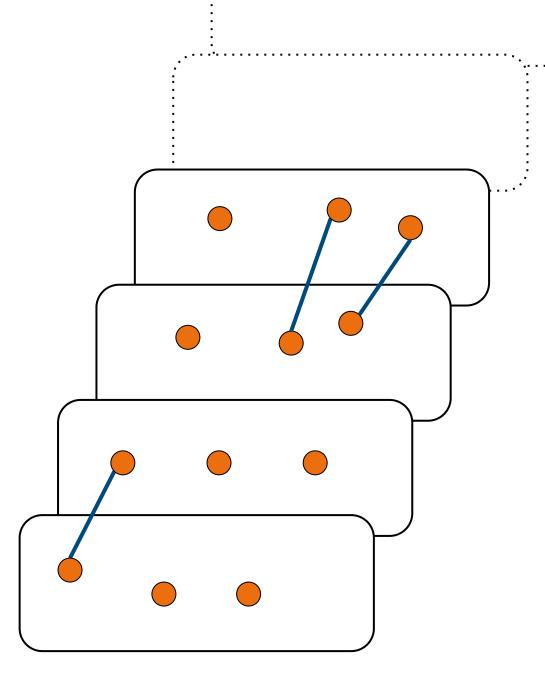
Application: Pattern Recognition for particle tracking using quantum algorithms

DESY.

Procedure: Connect hits from different particle - detector interaction (hit) detector layers and fit the space points to reconstruct particle tracks detector layer

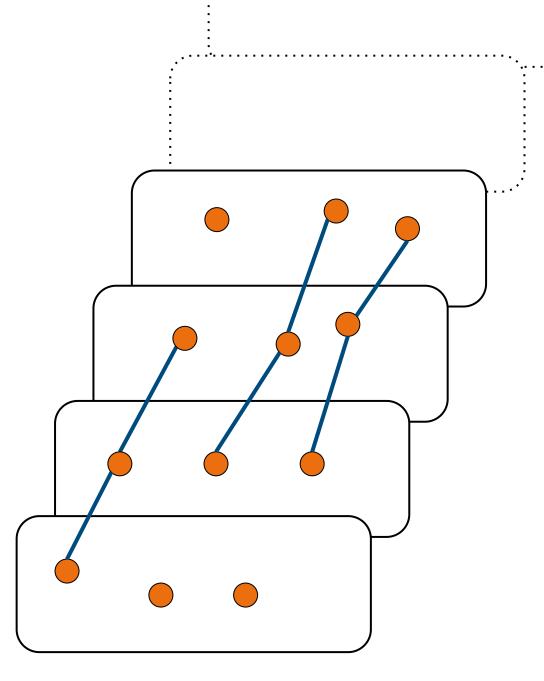
Pattern Recognition

• **Doublets** are created by combining hits from successive layers



Pattern Recognition

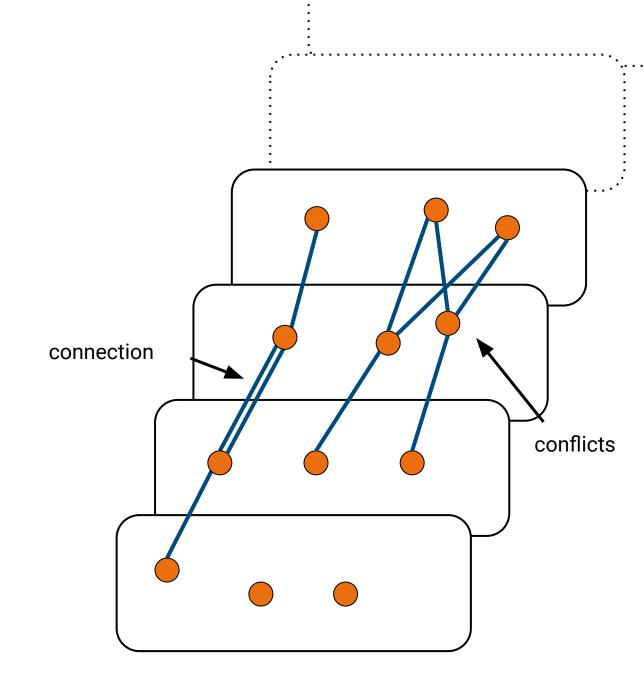
- **Doublets** are created by combining hits from successive layers
- **Triplets** are created by combining doublets



Pattern Recognition

- **Doublets** are created by combining hits from successive layers
- **Triplets** are created by combining doublets
- **Relations** of triplets as key feature

Goal: Identify triplets stemming from a single particle ("matched") and combine them to tracks



QUBO Quadratic Unconstrained Binary Optimisation

• Triplets $\mathbf{T}_i \in \{0, 1\}$

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \qquad (\text{QUBO})$$

QUBO <u>Quadratic Unconstrained Binary Optimisation</u>

- Triplets $\mathbf{T}_i \in \{0, 1\}$
- System with two types of parameters:
 - Conflicts: $b_{ij} > 0$
 - Connections: $b_{ij} < 0$
 - Individual term: a_i

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i$$
 (QUBO)

QUBO <u>Quadratic Unconstrained Binary Optimisation</u>

- Triplets $\mathbf{T}_{i} \in \{0, 1\}$
- System with two types of parameters:
 - Conflicts: $b_{ij} > 0$
 - Connections: b_{ij} < 0
 - Individual term: a_i

Goal: Minimising the QUBO cost function (Hamiltonian) of the system

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \qquad (\text{QUBO})$$

QUBO <u>Quadratic Unconstrained Binary Optimisation</u>

Minimise QUBO cost function

- Ground state \rightarrow best set of triplets to keep
- $\mathbf{v}_{\mathbf{binary}}$: $[\mathbf{T}_1, \mathbf{T}_2, \mathbf{T}_3, \dots, \mathbf{T}_N] \rightarrow [0, 1, 1, \dots, 0]$
- Large QUBOs need to be split into sub-QUBOs

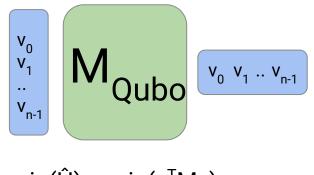
 \rightarrow sequentially minimised and combined to global solution

Computation:

•••

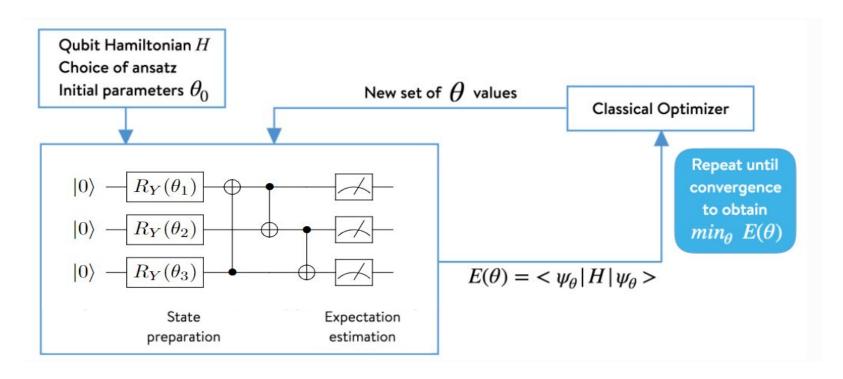
- Matrix diagonalisation (analytic solution)
- Hybrid quantum-classical algorithm (VQE)

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \qquad (\text{QUBO})$$

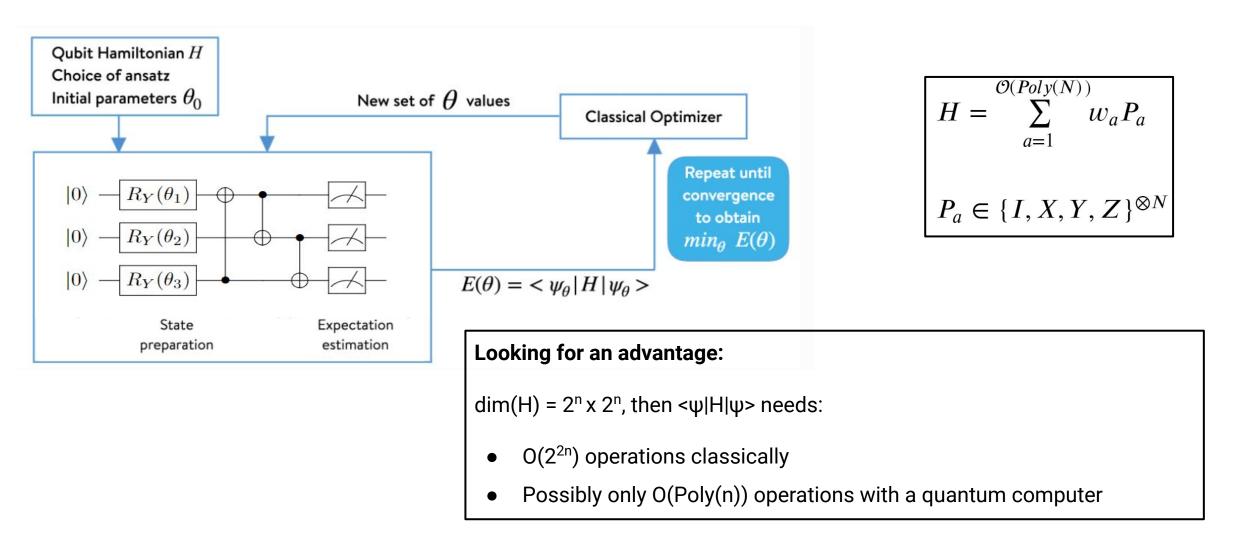


 $\min(\hat{H}) = \min_{v \in v} (v^{\mathsf{T}} \mathsf{M} v)$

VQE Variational Quantum Eigensolver

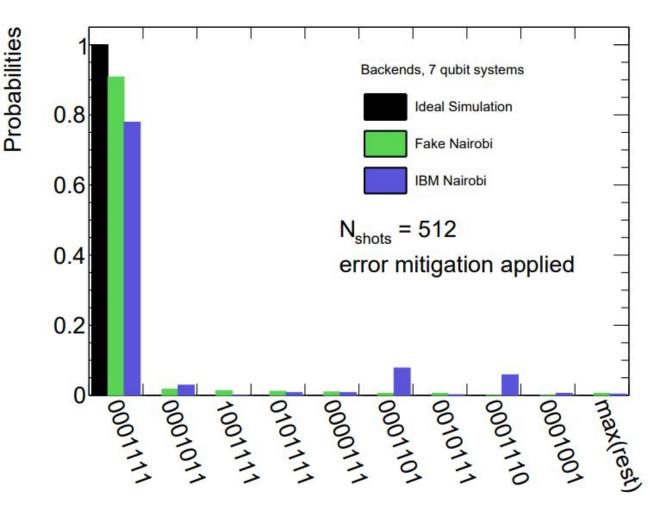


VQE Variational Quantum Eigensolver

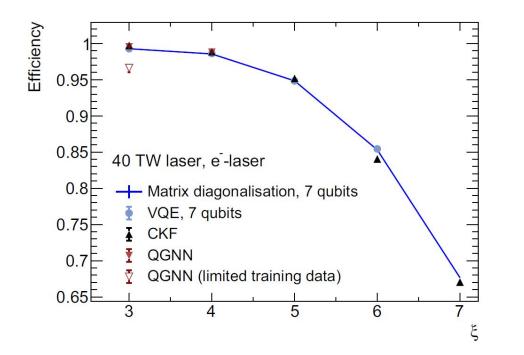


Quantum computing result example

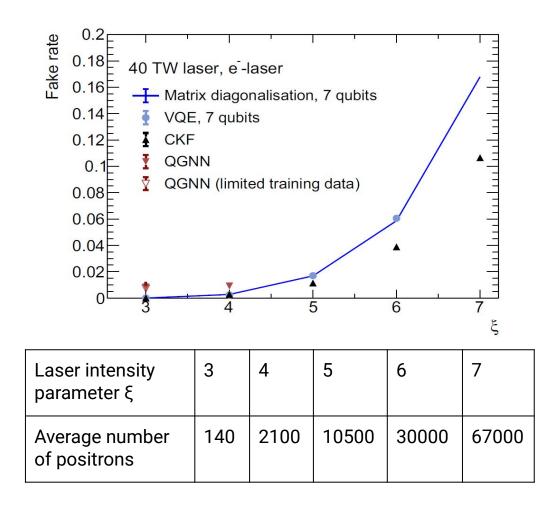
- Calculations on a quantum device are noisy:
 - \rightarrow Error mitigation and error correction
- 10 shots (number of circuit evaluations) sufficient for 99% success rate



Example: Positron tracking at LUXE



- Performance of quantum algorithms compared to classical track reconstruction algorithms
- Similar performance in efficiency, slightly higher fake rate



Source: [4]

Thank You!

- [1] <u>https://de.newsroom.ibm.com/ibm-dach-special-coverage-Fraunhofer-IBM</u>
- [2] "Quantum computation in power systems: An overview of recent advances", doi:<u>10.1016/j.egyr.2022.11.185</u>
- [3] <u>https://qiskit.org/</u>
- [4] "Quantum Algorithms for Charged Particle Track Reconstruction in the LUXE Experiment", Comput Softw Big Sci 7, 14 (2023). <u>https://doi.org/10.1007/s41781-023-00109-6</u>
- [5] http://opengemist.1qbit.com/