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Abstract

In this lecture, we review the discussion in [1]. The goal is to make
precise the arguments made by S. Hawking that simple assumptions lead
one to a violation of unitarity or the existence of remnants during the
evaporation of a black hole.
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1 Statement

Let us review a bit of the discussion in [2]
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Figure 1: Realistic black hole Penrose diagram. Stolen from [2].

We consider a spherical shell of matter that collapses into a black hole.
The Penrose diagram of this process is depicted in Fig. 1. As discussed in the
previous lecture, the initial state is some pure matter state. However, one finds
the outgoing radiation has the total number of particles in a given mode

nω ≃ 1

e2πω/κ ± 1
(1)

This is a thermal distribution with temperature T = κ
2π = 1

8πGM that arises
from a system being in a mixed state. Why is this a problem? Let us review
some basic quantum mechanics.

1.1 States of Quantum Systems

Let us consider a quantum system with Hilbert space H and an operator A with
a complete set of eigenkets {|n⟩} such that

A |n⟩ = an |n⟩ (2)

and a state |Ψ⟩ ∈ H can be expanded as

|Ψ⟩ =
∑
n

cn (3)

such that
∑

n|cn|2 = 1 (giving the usual ⟨Ψ|Ψ⟩ = 1).
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We now want to classify some states of quantum systems. We take the ap-
proach that a system is defined by a density matrix ρ such that the expectation
value of an operator A is given by

⟨A⟩ : = Tr(ρA)

=
∑
n

⟨n| ρA |n⟩ (4)

For a non-relativistic system, the time evolution is governed by the von
Neumann equation.

Definition 1.1 (von Neumann Equation). For a quantum system governed by
the Hamiltonian operator H, the density matrix satisfies the von Neumann
equation

iℏ
∂

∂t
ρ = [H, ρ] (5)

As usual, we can define a time evolution operator U(t, t0) as

U(t, t0) := exp

[
− i

ℏ
H(t− t0)

]
(6)

so that the density matrix of the system at time t, ρ(t), can be built from the
density matrix at time t0,ρ(t0) , as

ρ(t) = U(t, t0)ρ(t0)U†(t, t0) (7)

This is also a solution to Eq. (5).
With this technology, we can differentiate between two types of states for

our system

Definition 1.2 (Pure States). A system is in a pure state if its density matrix
can be written as

ρ = |Ψ⟩ ⟨Ψ| (8)

for some |Ψ⟩ ∈ H. The density matrix of pure states satisfies several properties,
including

ρ2 = ρ

Tr(ρ) = Tr(ρ2) = 1
(9)

Pure states are the usual states we study in introductory quantum mechan-
ics. However, a system can also be a a mixed state.

Definition 1.3 (Mixed States). A system is in a mixed state if its density
matrix can be written in terms of pure state density matrices as

ρ =
∑
i

pi |Ψi⟩ ⟨Ψi| (10)
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where |Ψi⟩ ∈ H. This is a convex sum, so pi > 0 and
∑

i pi = 1. Note that
pure states correspond to the special case of only one non-zero coefficient pi.
Apart from this degenerate case, mixed states satisfy

Tr(ρ2) =
∑
i

p2i <
∑
i

pi = 1 (11)

How do mixed states come about? Consider a system with two subsystems
(which we call A and B) and let the state of the whole system be ρsys. Then
we can define the state of the B subsystem by tracing out the A subsystem:

ρB := TrA(ρsys) (12)

The trace can be carried out by summing over a complete set of states spanning
HA, the Hilbert space of the subsystem A.

A simple example illustrating the above arises from the entanglement of
spins – let A and B each consist of a single spin- 12 particle. We can consider
the entangled state ρsys = |Ψ⟩ ⟨Ψ|, where1

|Ψ⟩ = 1√
2
|0⟩A |0⟩B +

1√
2
|1⟩A |1⟩B (13)

Note that the total system is in a pure state. However, we find

ρB =
1

2
|0⟩ ⟨0|B +

1

2
|1⟩ ⟨1|B (14)

Thus if we only have access to the B subsystem, we would find that our system
is in a mixed state.

For our purposes, an essential feature of the above is the conservation of the
trace of the density matrix. Using Eq. (7), one finds that

Tr(ρ2(t)) = Tr(ρ2(t0)) (15)

which implies

Remark 1. In (unitary) quantum mechanics, it is impossible for a pure state
to evolve into a mixed state.

This is the root of the information paradox.

For later use, we also define the entanglement entropy of a quantum
system.

Definition 1.4 (Entanglement Entropy). For a system in a state defined by ρ,
the entanglement entropy is

S = Tr(ρ ln(ρ)) (16)

1We use the shorthand |·⟩A |·⟩B := |·⟩A⊗|·⟩B , where the dots are 0 (1) for spin down (up).
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2 Assumptions

One could try to poke many holes in the previous section to “resolve” the
information paradox. After all, the discussion was based in non-relativistic
quantum mechanics. However, relativistic quantum mechanics/quantum field
theory (QFT) also enjoy unitary evolution, so the general principle outlawing
pure-to-mixed evolution holds true.

One can then go on to claim that there is some funny business happening
with QFT in curved spacetimes. This motivates the careful discussion in [1] to
clearly define the assumptions and physics going into Hawking’s calculation. It
is to this task we now turn.

2.1 The Power of Niceness

First, we somewhat formalize the notion of “usual physics”. This is described
as the Solar System Limit (SSL)

Definition 2.1 (Solar System Limit). The SSL is an assumption about config-
urations in quantum gravity and is defined by the set {Ni, ϵi}. This set consists
of niceness conditions {Ni} and small parameters {ϵi}. The assumption
states that if a configuration i). satisfies the conditions {Ni} and ii). has the
{ϵi} arbitrarily small, then physical processes can be described to arbitrarily high
accuracy by known, local, evolution equations.

Another way to state the SSL is that when it holds, we can specify a quan-
tum state on an initial spacelike slice S and a Hamiltonian operator gives the
state on later slices.

What are these niceness conditions? We can adopt the list from [1]. Let
us consider a state |Ψ⟩ on a spacelike slice S. Then a tentative set of niceness
conditions {Ni} is

• N1:
(3)RS ≪ ℓ−2

p

• N2
2: KS ≪ ℓ−2

p

• N3:
(4)R≪ ℓ−2

p in the neighborhood of S

• N4: All matter on S is “good” in the sense that

λ≫ ℓp

U,P ≪ ℓ−4
p

(17)

where λ is the wavelength of any matter particle and U and P are the
energy & momentum densities, respectively. [1] also demands all matter
satisfy the usual energy conditions.

2This arises from demanding that the slice sit nicely in 4D spacetime.
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Figure 2: Pair creation after evolving from one time slice to the next. Stolen
from [1].

• N5: In evolving the state from the initial slice S, the matter state should
be “good” on subsequent slices. We also demand that the lapse & shift
vectors used to specify the evolution should vary smoothly with position.

Here (3)RS and (3)RS are the intrinsic and extrinsic curvature of S, respectively.
(4)R is the curvature of the full spacetime. Note that the author specifies that
this list is not necessarily minimal.

2.2 Locality

We would also like to impose a notion of locality. An intuitive description is
that if we have a state on a spacelike slice S, then the influence of one region on
another vanishes as the distance between the regions becomes infinitely large.

For our purposes, we will have to be a bit more precise. Our goal is to ex-
amine pair creation at the event horizon of a black hole. With this in mind, we
consider a scenario like that depicted below The continuous lines are two slices
of spacetime. The square dots denote matter in the state |ψ⟩M and the circles
indicate pair creation due to the deformation of the slice. We assume that the
matter and created particles are extremely far apart.

Naively, locality dictates that the state on the upper slice should have the
form

|Ψ⟩1 ≃ |ψ⟩M ⊗ 1√
2
(|0⟩c |0⟩b + |1⟩c |1⟩b) (18)

However, this is too strict - locality allows ’small’ departures from this state.
What do we mean by small? If we let the matter state be of the form |ψ⟩M =
1√
2
|0⟩M + 1√

2
|1⟩M , then we could have

|Ψ⟩2 ≃
(

1√
2
|0⟩M +

1√
2
|1⟩M

)
⊗
(
(
1√
2
+ ϵ) |0⟩c |0⟩b+(

1√
2
− ϵ) |1⟩c |1⟩b

)
(19)

with ϵ≪ 1 but obviously not

|Ψ⟩3 ≃
(

1√
2
|1⟩M |0⟩c +

1√
2
|0⟩M |1⟩C

)
⊗

(
1√
2
|0⟩b +

1√
2
|1⟩b

)
(20)

How can we quantify the closeness of Eq. (19) to Eq. (18)? We can turn to our
earlier definition of the entanglement entropy. We can define the density matrix
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of the B subsystem for each of the three states above by ρB = TrMC(|Ψ⟩ ⟨Ψ|).
Then the entanglement entropies of this subsystem for the states above are

S1 = ln(2)

S2 = ln(2)− ϵ2(6− 2 ln(2)) ≈ ln(2)

S3 = 0

(21)

This motivates [1] to define locality for pair creation as follows

Definition 2.2 (Locality). For a pair-creation process occurring in a config-
uration satisfying the SSL, as the matter state goes further and further from
the pair-creation location, the entanglement entropy of either of the pair-created
particle satisfies

S

ln(2)
− 1 ≪ 1 (22)

2.3 Existence of traditional black holes

In addition to the above, we also assume the existence of “traditional” black
holes. This is essentially the statement that there is no ‘information’ about the
black hole in the vicinity of the horizon. We encapsulate this notion with a
definition of a information-free horizon

Definition 2.3 (Information-Free Horizon). A point on the event horizon of a
black hole is information-free if a neighborhood around this point is the ’vacuum’
in the sense that the evolution of modes with wavelengths ℓp ≪ λ < rs/2 is given
by the semiclassical evolution of quantum fields on empty space up to O(mp/M)
corrections.

And we also define

Definition 2.4 (Traditional Black Hole). A black hole with an information-free
horizon is a traditional black hole.

Note that in any curved space there is no unique definition of particles, but
for particles of wavelength λ ≲ R, with R the curvature radius, we can have a
definition for “empty space”. This is to say that one definition of particle will
vary with another by O(1) quanta with λ ∼ R. In the case of a black hole, on
would expect O(1) quanta with λ ∼M for any definition of particles – Hawking
radiation quanta also fall in this category. “Empty space” in this case means
that modes with λ < M are not populated with O(1) quanta each.

3 The Hawking “Theorem”

Roughly, the statement we now turn it is to show that for a configuration with a
black hole, the SSL and locality gives an unacceptable evolution (pure→mixed).
One must either i). accept the unacceptable or ii). alter the coniditions of the
SSL

7



3.1 The Slicing

As described in the sections above, the essence of the information paradox is the
apparent evolution from a pure state to a mixed state. However, this argument
simply looked at the initial and final states. To understand why the information
paradox is so difficult to resolve, we must look at it step-by-step.

First, we must slice up the black hole spacetime in such a way as to satisfy the
SSL. If we choose a spacelike slice that intersects with the spacelike singularity
of the black hole, then the SSL would not hold everywhere on the slice. Then
the task is to construct slices that satisfy the conditions in the SSL but capture
the physics of Hawking radiation.

This is done as follows:

• Outside the horizon, r > rs, we define the slice by t =constant

• Inside the horizon, r < rs, the spacelike slices are r =constant. We pick
this constant such that is lies between rs/4 and 3rS/4 so that it is far from
the horizon and singularity at r = 0.

• The above two segments are joined by a smooth connector piece C.

Note that we are interested in physical black holes that were formed by collapse,
whose Penrose diagram is displayed in Fig. 1. For such black holes, one can
continue the interior r < rs part of the slices to early times and smooth extend
all the way to r = 0, before the black hole formed. The slicing is depicted below.

Adjacent slices Sn and Sn+1 have tn+1 = tn +∆ and rn+1 = rn + δ, where
δ ≪ M . The primary difference in adjacent slices is in the connector pieces C.
In particular, in going from Sn to Sn+1, the connector piece stretches. This is
where particle creation takes place.

With our slicing outlined, we move onto the evaporation process in detail.

3.2 The (Leading Order) Process

We now outline the Hawking evaporation process step-by-step utilizing our slic-
ing of spacetime.

• The initial slice contains the matter state |ψ⟩M that collapses into the
black hole.

• After collapse, we evolve to the next slice. Pair creation happens in the
connector segment at the horizon, as shown in Fig. 4. The state is now

|Ψ⟩ ≈ |ψ⟩m ⊗ |ϕ1⟩ (23)

where we have defined an entangled state

|ϕn⟩ =
1√
2
|0⟩cn |0⟩bn +

1√
2
|1⟩cn |1⟩bn (24)
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Figure 3: Slicing the black hole spacetime. Stolen from [1].

Figure 4: Artistic depiction of Hawking evaporation process, circa 2011. Stolen
from [1].
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The b1 particle escapes to infinity and can be captured by an observer.
The entanglement entropy of this system with the (M, c1) system is

S1 = ln(2) (25)

• Evolving to the next time slice, the state becomes

|Ψ⟩ ≈ |ψ⟩M ⊗ |ϕ1⟩ ⊗ |ϕ2⟩ (26)

The {b1, b2} quanta have entanglement entropy

S2 = 2 ln(2) (27)

with the (M, {c1, c2}) system

• Repeating these steps a total of N times, we see that the resulting {bi}
are in a state with entanglement entropy

SN = N ln(2) (28)

with the interior (M, {ci}) particles

• As the black hole evaporates, its mass decreases. Eventually MBH ≃ mpl

and the conditions of the SSL are violated. We then stop the evolution.

When we stop the evolution, we have a collection of radiation quanta that
are entangled with the interior state of the black hole. From here, there are two
possible outcomes

• First, despite the SSL conditions being violated, the black hole could evap-
orate entirely away. This leaves the {bi} quanta in a mixed state that is
not entangled with anything because the black hole has ceased to exist.
This would represent non-unitary evolution

• The second possibility is that the evaporation has ceased and what remains
is a remnant that is entangled with the radiation quanta. This would be
a remnant.

Both of these possibilities are unsavory. The first for obvious reasons. As
for the later, we note that the remnant must have at least N states to purify
the Hawking radiation. This makes the remnant a compact object of finite size
and energy but unbounded degeneracy. This would be a strange thing indeed.

For the above, one could argue that the Hawking process leads one to either
pure state → mixed state evolution or the existence of remnants.

10



3.3 Small Corrections

As discussed above, in evolving from one slice to the next, the state evolves as

|ΨM,c, ψb; tn⟩ → |ΨM,c, ψb; tn⟩ ⊗ |ϕn+1⟩ (29)

At least, this is true to leading order. One may expect that interactions or
non-perturbative effects alter this state. Thus we now consider deformations of
the leading order state to see if they can resolve the paradox.

First, we want to define what we mean by small corrections. At the n-th
step of the evolution process, we can choose a basis of orthonormal states |ξn⟩
for the (M, {ci}) quanta inside the black hole and an orthonormal basis |χm⟩
for the exterior {bi} quanta such that

|ΨM,c, ψb; tn⟩ =
∑
m,n

Cmn |ξm⟩ |χn⟩

→
∑
i

Ci |ξi⟩ |χi⟩
(30)

Where we performed a unitary transformation on the states in going from the
first to the second line. The density matrix of the exterior quanta is

ρB = |Ci|2δij (31)

and the entanglement entropy is

SB(tn) =
∑
i

|Ci|2 ln|Ci|2 (32)

We now proceed to the (n+ 1)-th step. A {cn+1, bn+1} particle pair is created
and we assume the space of the new particles is spanned by the states

|γ1⟩ =
1√
2

(
|0⟩cn+1

|0⟩bn+1
+ |1⟩cn+1

|1⟩bn+1

)
|γ2⟩ =

1√
2

(
|0⟩cn+1

|0⟩bn+1
− |1⟩cn+1

|1⟩bn+1

) (33)

Rather than forcing the (n + 1)-th state to have the form in Eq. (29), we
relax the evolution somewhat. We will assume that the {bi} quanta already
outside the black hole are unaffected by the creation of the new pair. This is
reasonable since these quanta have completely escaped the vicinity of the black
hole and cannot be affected except via some extremely non-local process. Then
the most general evolution of the state from tn to tn+1 is

|χi⟩ → |χi⟩

|ξi⟩ →
∣∣∣ξ(1)i

〉
|γ1⟩+

∣∣∣ξ(2)i

〉
|γ2⟩

(34)
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where the {|ξai ⟩} are states of the (M, {ci}). By unitarity, |ξ(1)i |+ |ξ(2)i | = 1. At
leading order, we had ∣∣∣ξ(1)i

〉
= |ξi⟩∣∣∣ξ(2)i

〉
= 0

(35)

Using all the above, we have the state at tn+1 as

|ΨM,c, ψb; tn+1⟩ =
∑
i

Ci

( ∣∣∣ξ(1)i

〉
|γ1⟩+

∣∣∣ξ(2)i

〉
|γ2⟩

)
⊗ |χi⟩

= |γ1⟩
∣∣∣Λ(1)

〉
+ |γ2⟩

∣∣∣Λ(2)
〉 (36)

where ∣∣∣Λ(1)
〉
=

∑
i

Ci |χi⟩
∣∣∣ξ(1)i

〉
∣∣∣Λ(2)

〉
=

∑
i

Ci |χi⟩
∣∣∣ξ(2)i

〉 (37)

Now since the |γi⟩ are orthonormal, normalization of the total state implies that

|Λ(1)|2 + |Λ(2)|2 = 1 (38)

We can now define precisely what we mean by small corrections.

Definition 3.1 (Small Corrections). We call corrections to the leading-order
Hawking process “small” if

|Λ(2)|2 < ϵ≪ 1 (39)

If there is no such bound, then we say that the corrections are order unity.

3.4 Entropy Changes

We now show that at the step tn+1, the entropy of the b quanta with the
interior states increases if the corrections are small. First, let S0 denote the
entanglement entropy of the {bi} with the interior quanta at the time step tn.
That is,

S({b}; tn) := S0 (40)

Note that by the assumption that the {bi} are unaffected by the creation of the
new quanta pair p = (cn+1, bn+1), we must have

S({b}; tn+1) = S0 (41)

We wish to argue that the entanglement entropy of the {bi, bn+1} with interior
quanta satisfies

S({bi}, bn+1) > S0 − 2ϵ (42)

Thus, despite small corrections, the entanglement entropy increases in the step
from tn to tn+1.

This requires several lemmas
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Lemma 1. If Eq. (39) holds, then the entanglement of the pair p = (cn+1, bn+1)
with the rest of the system is bounded as

Sp := S(p) = Tr(ρp ln(ρp)) < ϵ (43)

This shows that the new pair is weakly entangled with the rest of the system.

Lemma 2.
S({bi}+ p) ≥ S0 − ϵ (44)

Lemma 3.
S(cn+1) > ln(2)− ϵ (45)

These all lead to the following theorem

Theorem 3.1. Let S0 be the entanglement entropy at time step tn of the exterior
quanta {bi} with the interior modes. At time step tn+1, the pair p is created,
and the new state deviates from the leading order one by a small amount less
than ϵ ≪ 1 as defined in Eq. (39). After this time step, the entropy of the
emitted quanta {bi, bn+1} will satisfy

S({bi}+ bn+1) > S0 + ln(2)− 2ϵ (46)

Thus the entanglement entropy of exterior quanta necessarily increases with each
emission if the corrections are small.

Proof. The proof follows using the strong subadditivity theorem

S(A+B) + S(B + C) ≥ S(A) + S(C) (47)

Setting A = {bi}, B = bn+1, and C = cn+1, this gives

S({bi}+ bn+1) + Sp ≥ S({bi}) + S(cn+1) (48)

Using the above lemmas, we obtain the result

Why is the above important? Naively, one might have guessed that small
departures from the leading order process cannot resolve the paradox. The
reason why this might not hold is that the new pair p have many {ci} particles
inside the black hole that they could get entangled with. This large number,
paired with delicate entanglement structure, may be enough to overcome the
smallness of the corrections and resolve the paradox.

A analogy can be drawn with burning a piece of paper or coal. When you
burn paper, the radiation captures the information of the paper, but it is diffi-
cult to extract this information because it is delicately encoded in correlations
between radiation quanta. Naively, this could have also been true for Hawking
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evaporation. The reason this is not true is because of the smallness of the cor-
rections. In burning a piece of paper, let us assume the paper atoms are in a
state |1⟩a. We then evolve this to a state with atoms plus radiation:

|1⟩a → 1√
2

(
|1⟩a |1⟩rad + |2⟩a |0⟩rad

)
≡ |γ1⟩ (49)

|2⟩a is an atom state orthogonal to the other. If we had started in this state,
the evolution would have been

|2⟩a → 1√
2

(
|1⟩a |1⟩rad − |2⟩a |0⟩rad

)
≡ |γ2⟩ (50)

This is orthogonal to |γ1⟩, as unitary evolution must map orthogonal states to
orthogonal states. The point is that the tn+1 state depends on the tn to leading
order. While there are delicate correlations, there is no “smallness” here. In
contrast, the black hole always produces roughly the same state during radia-
tion – regardless of the state of the black hole, the pair-produced state is the
same.

We are now ready for the Hawking “Theorem”

Theorem 3.2. If we assume

• The SSL niceness conditions {Ni} and local Hamiltonian evolution

• A traditional black hole with information-free horizon exists

then formation and evaporation of such a black hole will lead to mixed states/remnants.

Proof. We go one step at a time

• From the above, we know that there is a slicing of the black hole geometry
that satisfies the SSL conditions are satisfied

• In a region where the SSL is valid, we can identify and follow the evolution
of an outgoing mode with wavelength λ ≃ M

100 . Since SSL is valid, we can
expand this mode as

|ψ⟩mode = α0 |0⟩+ α1 |1⟩+ · · · (51)

Such an expansion can have one of two forms

–
∑

i|αi|2 ≃ 1

–
∑

i|αi|2 < ϵ′ ≪ 1
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In the former case, the form implies there are particles with wavelength
≃ M/100 at the horizon. Thus the horizon is not the “vacuum” and we
do not have a traditional black hole, in violation of the second assumption
of the theorem. In the latter case, the horizon is the vacuum and the
SSL informs us that the evolution of the mode will have to agree with the
leading order evolution of vacuum modes on this geometry up to deviations
controlled by a parameter ϵ. For ϵ ≪ 1, Eq. (39) is satisfied as the state
evolves and pair creation takes place.

• In the second scenario, the SSL implies that the created pair will be in
a state close to |γ1⟩. By the preceeding theorem, the entanglement en-
tropy of the radiation increases by at least ln(2)− 2ϵ with each time step.
Unlike a normal hot body, the entropy cannot start decreasinf after the
evaporation halfway point.

• The evaporation process produces N ∼ (M/mpl)
2 pairs before the black

hole reaches Planckian size. At this point, the outgoing radiation has a
large entanglement entropy of

S ≃ N

2
ln(2) (52)

From the previous sections, we return to the notion that we are forced
into either mixed states or remnants.

A corollary follows:

Corollary 3.2.1. If the state of Hawking radiation has to be a pure state with
no entanglement with the rest of the black hole, then the evolution of low energy
modes at the horizon has to be altered by order unity.

A small change in the state at the horizon changes this entanglement by
only a small fraction, and cannot reduce it to zero. Conversely, if we wish
this entanglement to be zero then we have to change the state of the created
pairs to a state that is close to being orthogonal to the semiclassically expected
one A small change in the state at the horizon changes this entanglement by
only a small fraction, and cannot reduce it to zero. Conversely, if we wish this
entanglement to be zero then we have to change the state of the created pairs
to a state that is close to being orthogonal to the semiclassically expected one

4 What does it take?

4.1 Misconceptions

• Misconception 1: AdS/CFT Solves the Information Paradox
One can sometimes come across the logic that the information paradox is
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solved because holography implies that that black hole system is dual to
a CFT, which is inherently unitary. Thus the formation and evaporation
of a black hole must also be unitary. However, this fact is besides the
point. The information paradox is not just a question about fixing the
issue of pure→ mixed state evolution – one must also explain how the
logic presented above is altered.

• Misconception 2: The Paradox is (only) about information
The problem discussed above is often referred to as the information para-
dox, but no where did we reference information carried by the initial mat-
ter state. This is because the paradox involves two distinct (but related)
issues: namely, the evolution of pure states to mixed states and the loss of
information of the initial matter state. These are separate issues because
it is possible to have final radiation states that are mixed but carry the
information of the initial state. It is also possible to have a final radiation
state that is pure but carries no information on the initial state. Thus
“information” is only one aspect of the problem. Presumably the solution
to the paradox will address both issues simultaneously.

4.2 Implications

Here we consider the consequences of the Hawking theorem. [1] argues that we
have three choices:

• New physics: If one wishes to keep the assumptions of the theorem, then
one is forced to predict some new physics occurs as the black hole evapo-
rates

• No traditional black holes: Rather than an information-free horizon, the
black hole has some distortions (hair) that depend on the state of the
black hole. Generally such hair produces divergent stress-energy at the
horizon.

• Incompleteness of the niceness conditions: One could argue the above
niceness conditions were not sufficient to guarentee Hamiltonian evolution
from one slice to the next.
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