
Brainstorming Document for Middle
Layer Collaborative Development

Authors (random order):
S.M.Liuzzo (ESRF), W. Sulimankhail (HZB), J. DAHENG (IHEPS), J. Biernat (Solaris), P.
Goslawski (HZB), M.Gaughram (Diamond), G.Benedetti (Alba), Z. Marti' (Alba),
N.Carmignani (ESRF), Chong Shik Park (K4GSR), M.Ries (HZB), X.Yang (BNL), L.Malina
(DESY), T.Hellert (LBNL), J.Kellestrup (PSI), A. Khan (BNL), G.Bassi (BNL), Y. Hidaka
(BNL), I. Agapov (DESY), S.Krecic (Elettra), X.Huang (SLAC), L.Farvacque (ESRF),
P.Schinzer (HZB), R.Fielder (Diamond), L.Nadolski (Soleil), T. Olsson (HZB), M.Bree (CLS),
S.White (ESRF), S.Mengyu (IHEPS), M.Apollonio (MAXIV), Yong-Chul Chae (DESY),
Magnus Sjostrom (MAXIV), Vyacheslav Kubytskyi (IJClab), Hung-Chun Chao (Diamond),
Tobyn Nicolls (Diamond), Paul Bennetto (Australian Synchrotron), T.Charles (Australian
Synchrotron), Samira Kasaei (Sesame), Song, Minghao (BNL), R.Tomas (CERN), B. Nash
(Radiasoft), J.Edelen (Radiasoft), Edmund Blomley (KIT)

Other institutes to contact:

EuXFEL, Brazilian light source, …

Represented Labs (random order):

ESRF, HZB, Diamond, Alba, K4GSR, NSLS-II, DESY, LBNL, PSI, Sesame, Elettra, SLAC,
Soleil, IHEPS, CLS, MAX-IV, IJClab, Solaris, CERN, KIT, Radiasoft, Ansto

Represented companies (1, random order):

Radiasoft

History:
- 2 November 2023, LSN, Document Creation
- 10 November 2023, LSN, SL
- 23 November 2023, SL, SW, LSN
- 5 December 2023, document reviewed during meeting
- 11 December 2023, SL includes in text comments raised during the meeting and

updated tables/figures. First draft of strategy timeline. SW, add python strong points.
- 18 December 2023, SL includes comments from M.Apollonio. SL further details

LEAPS meeting outcome and WP list/description. SL adds a draft budget.
- 12 February 2024, general meeting to finalize this document. Name still not selected,

reduced number of candidates. Added a few names to each subject, updated
budget/resources table.

1

Introduction

Presently, the Matlab Middle Layer1 (MML) software is used by most synchrotron light source
laboratories to link the beam dynamics simulations with commissioning and operation
activities. It acts as a digital twin. All required high-level software (from magnet calibration
to storage ring optics tuning (LOCO2 algorithm)) is developed based on beam dynamics
simulations in the Accelerator Toolbox (AT3). The same code (including user interfaces) is
used directly with the real beam by simply switching a global flag ("physics"/"machine" or
“simulator/online”). This tool has tremendous advantages for the development of new
storage rings and for their commissioning and operation. Moreover, the tools developed in
one laboratory within MML are immediately usable by all other laboratories using MML, thus
fostering the exchanges between accelerator physicists.

However, the Matlab Middle Layer, developed in the 90's, is becoming difficult to maintain in
a collaborative way. The last non-laboratory specific version update dates from 2017: as it
does not benefit from modern coding techniques and libraries and does not implement
scientific open data management it will soon become obsolete and put our facilities at risk.
Updating and maintaining it would require re-writing of most code and its user interfaces.
MML is nevertheless a most valuable tool that will continue to be used for many years and
by several labs. MML will serve as a reference for the present project proposal, thus
including efforts for its maintenance in the mid-term.

Python, on the other hand, is open-source, is the most widely used code in the world and
benefits from extensive open-source scientific libraries integrating modern algorithms.
Choosing Python to replace MML allows reaching a much wider audience, simplifies
interfaces to many other codes used by our community, and will help in the future
developments critical for the new fourth-generation light sources.
Available python packages allow integrating modern computing techniques such as heavy
parallelization (CPU/GPU) or to interface for modern scientific libraries involving advanced
data analysis, optimization algorithms or machine learning algorithms that are now a critical
aspect of accelerator design and operation.
In the past years, ESRF has led the developments of Python AT (pyAT4), making it a solid
foundation for the definition of a new, advanced, and open-source “Python Middle Layer”. At
the DIAMOND light source, Python Toolkit for Accelerator Control (pyTAC5) and pyAT
Interface for pyTAC (atip6) provide the seed to build an accelerator-oriented software library
very similar to MML based on Python (presently linked to EPICS and to the local storage ring
layout).
The packages aphla (NSLS-II), py4syn (Brazilian Light Source), SLS-PSI python-epics
virtual accelerator are other examples of existing “python Middle Layers”.

6 https://github.com/dls-controls/atip
5 https://github.com/DiamondLightSource/pytac
4 https://github.com/atcollab/at/tree/master/pyat
3 https://github.com/atcollab/at

2 J. Safranek et al. Linear Optics from Closed Orbits (LOCO): An introduction,
SLAC-REPRINT-2009-545

1 https://github.com/atcollab/MML

2

https://github.com/dls-controls/atip

DESY and ESRF joined efforts to translate error setting and correction functions from
Simulated Commissioning (SC7 based on Matlab AT) to Python (pySC8), extending the
tuning possibilities presently available in MML and in particular reproducing the features of
LOCO optics correction in Python language. Most building blocks for a new Python version
of MML are being developed independently in several laboratories.

The newly designed Python Accelerator Digital Twin (TEMPORARY NAME) will then be
a common work among all institutes, to put together the existing tools and create the missing
components (such as graphical interfaces and GPU support). The common project of a
Python Accelerator Digital Twin (TEMPORARY NAME) would profit from all these recent
developments and have all the features of the old MML software:

1. Control system agnostic
2. Accelerator agnostic
3. Works for transfer-lines, linacs, ramped accelerators
4. Digital twin: allows to test tuning tools in real life conditions without need of expensive

and rare beam time
It would also, thanks to existing python packages and features:

1. Fully open source code (with licence to be defined)
2. include the possibility to be used on large computing clusters for automated

commissioning simulations,
3. profit from recent beam dynamics developments to be faster and more precise than

the existing MML (GPU, analytic Jacobians9) using state-of-the-art programming
techniques and state-of-the-art accelerator-oriented library,

4. enable seamless connection to our facilities' control system (EPICS, TANGO,
DOOCS, and so on),

5. make use of most modern OPENDATA and OPENSCIENCE and FAIR (Findable,
Accessible, Interoperable, Reusable) principles, data labeled for Machine learning
and Artificial intelligence algorithms

6. include off-line digital twin for tuning tools development and on-line digital shadow for
monitoring of indirect observables.

7. enable straightforward implementation of available python based Artificial Intelligence
and Machine Learning tools (e.g.: pytorch, Badger/Xopt)

8. Enforce thorough documentation and easier/shared maintenance (github)

The Python Accelerator Digital Twin (TEMPORARY NAME) represents a virtual machine
that could be set up to simulate the accelerator in real-time. Its use could then be extended
compared to MML to monitor characteristic quantities (orbit, tunes, optics, etc..) and their
drift concerning the expected values and feed Artificial Intelligence (AI) models that can be
used to support operation or efficiently detect or predict failures. The operation of
accelerators will strongly benefit from such modern numerical tools.

9 A. Franchi et al. “Analytic formulas for the rapid evaluation of the orbit response matrix and chromatic
functions from lattice parameters in circular accelerators” https://arxiv.org/abs/1711.06589

8 https://github.com/lmalina/pySC
7 https://github.com/ThorstenHellert/SC

3

Current Situation

Overall, in the accelerator community, there is a strong push to switch to Python, and this is
why a proposal to the LEAPS consortium was initiated by ESRF to obtain EU funding in
2025.

However today, many laboratories do not yet have the means to switch to full Python.
● Hybrid (Matlab-based and Python-based) use is more and more promoted in many

facilities
● There is a strong need to maintain interoperability Matlab/Python and identify the

required resources for it
● It will be profitable to identify the obstacles (applications, training, expertise) to switch

to Python

Regarding Matlab tools, we are facing possible difficulties since we have fewer and fewer
MATLAB developers which is going to be an issue to maintain interoperability if the Python
community keeps growing as it is now

Concerning the organization of the meeting, we have 2 separate working groups: WG1:
Accelerator Toolbox developments (AT) and WG2: MiddleLayer developments. The AT
working group's first meeting will be held separately. S. White will organize the meeting.

The host laboratory for the next pyML/pyAT meeting (twice a year) still needs to be defined
as well as a draft program. (DESY candidates, June, if no other volunteer, Berkley second
candidate)

Machine Middle Layer Working group

Goals
● Establish governance (5-6 people, from different labs, which could be the same as

the AT one)
● Building a roadmap (ROADMAP) and reasonable priorities according to our

resources
● Identify critical competence (software architect, developers, CD/CI, etc.)
● Preparing documents for LEAPS funding
● Choosing an acronym: https://forms.gle/7PmV2nGzRpjtewwE7

Timeline strategy

Immediate term:
WP leaders will become scientific board of the project.

4

Could define also a “project management board” (max 5 people, frequently changing) to take
decisions if needed in case of absence of unanimous agreement among labs.

Short term: setting the base for development
● Create from the existing codes a control agnostic python middle layer

○ Gather features of existing tools (developed within the accelerator community
or elsewhere). Either choose an existing software as a starting point or define
detailed specification of a new software.

○ Define architecture of software: modular, easy to maintain, install & configure
○ Verify that all tools will be control and accelerator agnostic as for MML.
○ Define it all tools will also be simulation back-end agnostics (pyAT, Elegant,

MAD, SAD, Xsuite)
○ Define if units will be enforced (SI for example, or software enforcement) 10

○ Define if there is need for dynamic lattice element additions
○ Define best tools to provide GUI to pyML tuning tools.
○ Define list of desired features, including those already present in MML. Keep

in mind the need for Turn-by-turn features and FAIR data principles.
○ Agree on lattice formats naming structure to be used
○ Agree on documentation / unit testing rules for code updates
○ Test in at least 3 facility with different control systems
○ Define licencing terms for all software packages

● Define if calibration package is needed
● Create from the existing codes a control agnostic digital twin for development of

higher level tuning tools
○ Gather features of existing tools. Either choose a starting point or define

specification of new tool.
○ Include fault cases and realistic conditions in digital-twin (vibration of

magnets, BPM incoherency/offsets, lattice errors, beam loss, etc..)
○ Include the possibility to perform user defined lattice updates while the digital

twin is running (simulate simultaneous action of other applications than the
one being tested).

● Set up first/basic tuning tools in the digital-twin mode: such as orbit, tune and
chromaticity based on existing tools in MML. The underlying tuning tools should be
usable:

○ on the real accelerator and on a simulated model
○ either used from command line (for commissioning simulations) or from a GUI

(if available)
○ Should work for linac/booster if possible / applicable

● Test tools in operation-mode in at least 3 facilities with different control systems
● Create first user interfaces and test them in digital-twin mode
● Test user interfaces operation-mode in at least 3 facilities with different control

systems
● Verify all documentation is present.
● Verify unit testing is present for all code
● Release 0.0.0

10 https://github.com/hgrecco/pint

5

https://github.com/hgrecco/pint

Mid term: recover all MML tools, add digital-shadow, use for virtual
commissioning

● Set up a process of 1 release every 6 months (June/December).
● Set up 2 x 2-days workshops per year (1 full remote, 1 hybrid) for updates and

progress with training sessions.
● Develop and test in digital-twin mode:

○ LOCO,
○ BBA,
○ Turn by turn optics tuning,
○ First turns beam threading
○ NOECO
○ DA
○ AC-BBA
○ AC-LOCO
○ etc…

● Test above tools in operation-mode in at least 3 facilities with different control
systems

● Test above tools for linac and ramped accelerators (boosters) if applicable
● Set up tools for digital-shadow, test them in at least 3 different laboratories
● Apply tuning tools to run virtual commissioning in a large computing cluster
● Use available artificial intelligence for optimization (ex: pytorch, Badger/Xopt)
● Test use of developed tools for simultaneous tuning of injectors (linac, booster and

main storage ring tuning).
● Show test cases of specific tools designed for specific lab needs (ex different

injection tuning tools in different labs due to different injection schemes)
● Verify all documentation is present.
● Verify unit testing is present for all code
● Release 1.0.0. This release should feature the equivalent of most basic MML tools.
● Maintain Matlab Middle Layer (MML) operational and evolve with new functionalities:

○ Make MML compatible with most recent matlab visions (matlab 2023)
○ Bunch by Bunch middlelayer library - functions to make it easier for physicists

to visualize and turn by turn process data (from any system)11.
○ Turn by Turn (Spark) middlelayer library – different sets of code exist for

SPEAR that could be used as starting examples.
○ PlotWaveform – similar to PlotFamily but used for waveforms. We have a

machine-independent version for SPEAR where the input waveform families
are file driven.

○ PlotImage – define the data structure, provide some image/zoom,
enhancements, get/save, etc

○ Transport line emittance interface. Work exists for SPEAR. LCLS should have
versions and algorithms

○ Transport line LOCO – work exists for SPEAR
○ Transport line steering interface – work exists for SPEAR

11https://accelconf.web.cern.ch/ipac2018/papers/wepaf056.pdf#search=%20domain%3Daccelconf%2
Eweb%2Ecern%2Ech%20%20%2Bauthor%3A%22corbett%22%20%20FileExtension%3Dpdf%20%2
Durl%3Aabstract%20%2Durl%3Aaccelconf%2Fjacow

6

○ Applications for swap-out injection (?)
○ Beamline steering – allows operators to steer the photon beam In x-x’, y-y’.

Work exists for SPEAR
○ Corrector ‘heatmap’ – show if a corrector is having problems.
○ Archiver for configurations, etc
○ Conversion from GUIDE to hard code or AppDesigner
○ New BBA routines using parallel BBA
○ New optics correction routines for LOCOM.
○ Perhaps it is also a good idea to have a universal tool for retrieving, viewing,

and analyzing history data.
○ A tool for viewing fast orbit data (for example, 4 kHz for SPEAR).
○ An interface for viewing and analyzing Beam Loss Monitor data.
○ LabCA maintenance

Long term: test new features, keep and improve high quality standards,
● Set up 1 workshop every 2 years (hybrid) for updates and maintenance.
● Install and test in all partner laboratories and compare to MML
● Develop in digital-twin-mode automated commissioning simulations sequences
● Test above automated tuning for at least 3 different facilities
● Include AI tuning in list of automated commissioning
● Test use of tuning tools in continuous mode (slow feedback)
● Feedback optics measurements to digital-shadow mode
● Empower digital-shadow with heavy computations such as Lifetime, injection

efficiency, dynamic aperture, losses, and collective effects continuous simulations
● Add anomalies for more realistic virtual accelerator and more robust app

development
● Consider possible inclusion of FEL. Ex PERSO (Mathcad) code by Luca Giannessi

Elettra.
● Test automated commissioning simulations in at least 3 laboratories
● Verify all documentation is present.
● Verify unit testing is present for all code
● Release N.0.0. This release should be ready for most basic MML tools.

Defining what Python middle layer will be

Follow a very similar philosophy as the MML:
○ Having transparent access to a simulator, a digital twin, and the real accelerators
○ Providing a library of high-level generic functions
○ Provision of adapted generic GUIs
○ Link to dedicated layer for the controls (TANGO, EPICS…)

7

Project Architecture (software)
Modern layering for easier maintenance, decoupled by domain experts:

● Facilitate identification of maintainers, and reduce stress by empowering layers
instead of the whole architecture

● Interaction with other packages. Enabling the integration of additional packages in
the global project such that the maintenance of each element is well separated from
that of the others (software quality assurance): ex pyAT, pySC, pyNAFF (GNU GPL
v3), pyLOCO, etc…

Possible scheme in figure 1 (all code is python or C if needed for speed):

Figure 1: possible scheme of (TEMPORARY NAME) project. 4 columns represent the 4 uses
of the code. Each block represents a stand alone software package or group of software
packages. Identical blocks indicate that the software is developed such that it works in all
cases unchanged. The green block encompasses the software tools.

List of software packages to be developed:
● Middle Layer (pyML)). Main objective: switch among different control systems and

different accelerators. (if needed among different simulation backends)
● Magnet Calibrations (pyMC). Sets a framework to assign calibrations

Current-strengths including combined function magnets. Could make use of Radia
models or completely by-passed by facilities that perform calibrations at the control
system level. May also include handling of hysteresis when/if possible.

8

https://pypi.org/project/PyNAFF/

● Digital Twin (pyDT): replaces the electron beam with particle accelerator
simulations. It would take magnet/RF/etc.. set points data from a pyAT model
(off-line, digital twin) or from the real magnets (on-line, digital-shadow)

● Tuning Tools (pyTT): Several packages, one for each tuning tool. If some features
can be grouped a layer of code will be added. Main objective:

○ measure and correct specific accelerator quantities. Ex: orbit, tune,
chromaticity, optics, DA, lifetime, Artificial Intelligence / Machine learning
based tuning, Turn by turn optics...

○ set operation point for accelerator components. Ex: collimators, non-linear
magnets, fast kickers/pulsed elements, etc…

○ Acquire, store and analyze data following FAIR principles
○ All tools work from command line (GUI is not compulsory and is a separated

code, without any active computation)
○ All tools work on the real control system or in pure pyAT simulations (act via

Middle Layer)
○ All tools work based on a real or simulated diagnostics (act via Middle Layer)

● Graphic User Interfaces (GUIs). Several, one for each tuning tool (~ 20). Main
objective: control room operation.

● Commissioning sequence (pyCS) / automated commissioning: run in a sequence
several tuning tools. Either acting on real accelerators or on individual simulated error
seeds. Use pySC.

● Anomalies (pyAN) trigger anomalies in the digital twin: random errors, beam losses,
lifetime issues, etc…

This will result in more than 50 different independent software packages. Each package
could be forked at a given lab for specific development. Each package will run unit-tests at
each commit and will be released only if all new features are fully documented (Sphynx).
Each package will make use as often as possible of software developed elsewhere to
simplify long term maintenance.
The architecture of the software will be tailored to the developers skills that are mostly
accelerator physicists. Some simplifications to the architecture will be accepted in view of the
long term maintenance. Else more expert software engineers will have to be involved (hired
for the project).
At the global level (green box in Figure 1) all accelerator specific configurations are set and
the installation takes care of installing the relevant packages. This configuration may be
extended at will to cover local needs (generic/mandatory and specific configuration files).

DIAMOND development is a good starting point for pyML and pyDT, evolution from NSLS-II
aphla. Python Toolkit for Accelerator Control (pyTAC) and pyAT Interface for pyTAC (atip)
LBNL/DESY pySC could be a good start for modernized tuning tools.
The BlueSky12 code (??, also used by X-ray beam lines) could be used and integrated for
data analysis and acquisition.

12 blueskyproject.io

9

Wanted improvements compared to MatlabMiddleLayer
● A better separation between what is common between facilities and what is

facility-specific
● Fine-tuning to each installation without breaking the code (true for both AT and

middle layer)
○ Facility-specific settings, control (performance)

■ Depends on the complexity and size of the installations to be
controlled

■ depends on the IT infrastructure of each plant
■ Tuning pyAT (needed forks/branches) to your accelerator facility

specificities in a more generic way (true for AT, pyML, etc). Would be
nice if cross-compatibility with pyAT is kept (unit tests: new pyAT
releases are not harming the pyML infrastructure).

● Increase the use of operations that require synchronization, e.g. orbit feed-back
processes, and in general evolution in time (e.g. tools to have a continuously updated
ORM). At present MML is used in a rather static way, our wish at MAXIV was that
pyML can become more “active”. In Tango we could exploit the TANGO/EPICS
“event” feature to have a flow of data continuously updated, instead of using the
time/network consuming polling feature. Maybe my comments can be included in the
concept of digital shadow.

The table below gives an incomplete list of features to keep, improve or add to pyML
(temporary acronym) compared to MML. Priority 1 is the highest (short term development). It
means that it is needed by the other developments.

FEATURE Status Description priority Contributors

Control system agnostic
python middle layer

wished e.g.: pyTAC 1 Y. Hidaka

Easy installation and
configuration

wished pip install, config
file

1

Collaborative
development

to impr… GIT, pull requests,
github discussion,
workshops

1

Digital twin to impr… E.g.: atip 1 Y. Hidaka,
S.Liuzzo

Calibrations kept
to impr…

Combined function
magnets,
hysteresis, cycling

1 S.Liuzzo

Storage ring agnostic
applications

kept
to impr…

transfer lines,
boosters

2

Linac agnostic tuning
applications

to add 2

10

FEATURE Status Description priority Contributors

Digital shadow (online
digital twin)

wished
to add

2 S.Liuzzo

Graphical interfaces re-write 3

GPU tracking wished within pyAT separate

Commissioning
sequence

wished e.g.: pySC 5 Y. Hidaka,
S.Liuzzo,Jacek
Biernat

Automated
commissioning

wished 5

Matlab maintenance for
benchmark

kept 2

OPEN FAIR data to add 1

high-performing
feedbacks

to add Could use event 5

Connection to History
data base

to add Update DT based
on HDB data

5

OTHER FEATURES to add

Table of tuning tools (priority 1 is reserved for pre-requisites: middle layer, calibrations, digital
twin,):

Tuning tools Status Description priority GUI
Priority (+1)

Contributors

Orbit kept
re-w…

2 YES S.Liuzzo

Tune kept
re-w…

2 YES1 S.Liuzzo

Chromaticity kept
re-w…

2 YES S.Liuzzo

Optics plot
navigator

kept
re-w…

3 YES

COD bumps wished 3 YES

BBA to im… 3 YES2 Minghao Song

11

LOCO to im…
re-w…

analytic
formulas

3 YES3 S.Liuzzo

LOCOM wished 4 YES4

Transfer-line LOCO wished 4 YES

NOECO wished 4 YES5

Turn by turn optics
+ NAFF

wished see OMC3 for
example

4

ICA wished 4 X.Huang

First turns wished
to im…

4 S.Liuzzo

Turn-by-turn tune wished 4 YES1

AC-BBA wished 5 YES2

AC-LOCO wished 5 YES3

AC-LOCOM wished 5 YES4

AC-NOECO wished 5 YES5

Artificial intelligence
optimizations

wished RCDS, Badger,
Xopt, ML, AI

5 Xi Yang, S.Liuzzo

Machine learning
optimizations

wished 5 Minghao Song

Anomaly detection wished 5 Jacek Biernat,
S.Liuzzo

For each tuning tool a graphical interface is expected. It is not mandatory for all applications
as in some cases the tool is used very seldom or only by experts. Some interfaces could be
shared among several tuning tools, for example BBA and AC-BBA. The development of
tuning tools and of their corresponding interfaces is separated. The graphical interface will
be linked to a given release of the underlying tuning tools.

Supporting and strengthening the community, with the long-term aim of
facilitating migration from MML to pyML

● Promoting best practices keeping in mind that there are diverse use cases
○ Use AT alone
○ Use AT/ML alone
○ Development for AT/ML

12

○ Operations
● Animating the community (biannual pyML/pyAT workshop, GitHub training, a soft

steering committee)
● Building trust and ease of use
● Training and skills maintenance for rich collaborative development

● Software, Github, Continuous Integration / Continuous Development (CI/CD)
● Working with virtual environments
● Facilitating local and remote developments on various GitHub/GitLab servers

Reinforce robustness and testing for each release
● Intrinsic fragility of fast-changing Python environments
● CI/CD aka Continuous Integration/Continuous Developments:

○ Unit testing,
○ Regression testing

Enrichments compared to MML
● Data management

○ Focus on OPEN DATA formats
○ The FAIR Principles (Findable, Accessible, Interoperable, Reusable)

correspond to guidelines whose primary aim is to improve the reuse of
research data. They were published in 2016 in the article The FAIR Guiding
Principles for Scientific Data Management and Stewardship.

● High-Performance Parallel Computing (CPU/GPU)
● Machine Learning (for example, anomaly detection based on the continuous

comparison among online-digital twin and measurements)
● Enabling connection to online digital twin (digital shadow) for TANGO/EPICS
● Improve and enforce Documentation (every new development is accepted only if

documented). Creation and update of a manual.
● Setting and promoting a forum starting with the tool in place (GitHub)
● Work simultaneously on several accelerators at the same time (injector, linacs,

booster, transfer lines, storage ring)
● Fast measurement algorithms based on Turn-by-turn data of Fast acquisition flow of

the BPMs

LEAPS remarks

LEAPS support to apply for (MARCH 2024!):
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-detai
ls/horizon-infra-2024-tech-01-04

13

https://www.nature.com/articles/sdata201618
https://www.nature.com/articles/sdata201618
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-infra-2024-tech-01-04
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-infra-2024-tech-01-04

This call has been analyzed by LEAPS and ESRF EU grant experts. It is too big, not fitting
the whole description (only digital twin, but no DestinationEarth and support to policy
decision) and the deadline is to close.

For next project:
LEAPS will deal with the part A of the project proposal (about 150 pages of lab info, names
and signatures)
We will write 45 pages of B part. template or from DITARI available. Likely more support
from ESRF EU-grant office.

For workshops: LEAPS will support workshops.

Work packages (proposal)

WP 1: coordination
Description: organize meetings and workshops. Collect material for milestones and
deliverables. Interact with LEAPS/EU. Finance external collaborators trips, conference fees,
consultancies. Student grants.

WP 2: training, communication, dissemination, capitalization

WP 2.1: organize internal training for git, pyAT, hdb, python, etc…
Description: training for needed tools for virtual accelerator development: git, python

WP 2.2: use python virtual accelerator as a training tool
Description: for newcomers and control room operators. The training tools are powered by
the Virtual accelerator.
Based on developments of the project, training tools are open to Accelerators schools,
PhD-schools, operators, etc...

WP 3: python middle layer

WP 3.1: python middle layer
control system agnostic, accelerator (SR, linac, transferline,) agnostic middle layer.
Calibrations. Collaborative development.

WP 3.2: tests python middle layer developments
Continuous development tests for git repository to guarantee safe/backward compatible
releases.
Recurrent and easy to run tests of the python middle layer at several accelerator facilities.

14

WP 4: digital twin and shadow

WP 4.1: Digital twin, digital shadow
Description: Digital twin and digital shadow cores. Piloted by pyML commands (WP1). allows
full tuning of digital model status: radiation, turn-by-turn, quantum effects, tapering, vacuum
levels, filling patterns, etc…

WP 4.3: intensive computations quantities within the digital twin and
shadow

Description: Touschek lifetime, vac lifetime, inj eff, losses (levels (relative, estimated from
number of lost particles, location of deposited particles) data updated in digital shadow and
twin, gpu powered (WP4)

WP 5: tuning tools
Description: define tuning tools and their corresponding graphical applications based on
work of WP1. Test using digital twin (WP2) and real accelerator. Use Open FAIR Data.
Computing cluster interface.

WP 5.1: command line tuning tools

WP 5.2: graphical user interfaces

WP 6: pyAT development
Description: development of pyAT and GPU tracking in pyAT, hardware for computations
(GPUs, CPUs)

WP 6.1: pyAT developments

WP 6.2: GPU tracking development

WP 6.3: pyAT for linacs

WP 6.4: pyAT for ramped accelerators

WP 7: Matlab middle layer maintenance
Description: maintenance of Matlab middle layer code for potential later transition

15

WP 8: commissioning

WP 8.1: virtual commissioning
High statistics simulations for tolerance definitions
Several seeds of specific magnet and diagnostics errors are applied in the lattice. The
commissioning sequence is applied to each seed and relevant quantities are computed and
visualized.

WP 8.2: automated commissioning
Virtual commissioning sequences are applied to real storage rings, transfer lines and linac
and the corresponding pyTT(WP3) tools are further tuned.

Description: exploiting tuning tools develop

WP 9: Artificial intelligence for anomaly detection and
optimizations
Description: development of external tools that simulate anomalies and failures scenarios
within the DT. For example: beam loss, vacuum leak, lifetime accident, failure of correctors,
loss of synchronization, blocked scrapers, obstacles, etc... Build a scalable solution (easy
addition of new failures/anomaly scenarios) that may be enabled with a given rate of events
in the Virtual accelerator pyDT (WP4). This will allow more realistic virtual accelerators and
robust applications developments (WP5) and more educative training tools (WP2).

Compile list of possible anomalies/failure scenarios: vac leaks, hole in chamber, melted rf
finger, id liner folded, (list from operation of all partners

WP 9.1 Machine learning for optimizations

WP 9.2 Machine learning for anomaly detection

16

Resources & Budget (summary)
Assuming:
4 years project duration
~ 10 k€ for one person/month

The above tables describe the available resources and potential in kind contributions (beam
time, computing clusters, etc…) . The total (p/m + in kind) commitments are usually doubled
when asking for EU funds, depending on the call.

External labs (non-EU funds eligible) could be financed for trips, conference fees and
consultancies.

Other references

Glossary

Middle Layer: software layer that allows connecting to any control system or digital twin. It
works with any pyAT accelerator lattice model following a series of guidelines.

Virtual accelerator: simulated control system for off-line development of operation tuning
applications

17

Digital Twin: returns beam parameters including optics, injection efficiency, lifetime (vacuum
and touschek) , collective effects, etc… based on a pyAT digital model. Anomalies act on the
digital twin to drive abnormal states for the machine.

Digital Shadow: as the digital twin but running based on strength continuously updated from
the real accelerator. Updates properties based on magnets set point and measurements on
the accelerator. Comparing the measured values to the digital shadow enables to detect
beam anomalies.

Commissioning Simulations: series of simulated tuning and corrections from first turns to

fully corrected machine. Done for many seeds.

18

