BESSY I
Light Source

EXPERIMENTAL TESTS OF PYTAC
& BLUESKY @ HZB & ESRF

Teresia Olsson & Simone Liuzzo,
Accelerator Middlelayer Workshop, 19-21 June 2024

INTRODUCTION

Teresia Olsson, Accelerator Middlelayer Workshop 2024 2 HZB - : EiEgiiYSgurce

—
INTRODUCTION

PURPOSE

Get hands-on experience of using some already existing python tools (pytac & bluesky).

* Test both at EPICS (HZB) and Tango (ESRF) facility.

 Evaluate user experience as input for further discussions about the python middlelayer.
* Put the functionality of these tools in the context of what MML does.
« Test case: orbit response matrix = change steerers and measure the orbit change.

* Note: this is personal experience from learners of the tools.

3 H ZB EEgSh%YSgu rce

INTRODUCTION :
Standardized Orbit bumps, tune, chromaticity,

scripts for common response matrix etc.
tasks

WHAT DOES MML DO? Quick

measurement
scripts

High level Orbit correction, BBA, LOCO etc.
applications

Hide control
system names

Convert between
different element
name conventions

Handle wait time

when set/read

devices

Group
elements

Collaboration
and sharing of
tools

Machine

independent

Store machine Switch
configuration operational
(save/restore) modes

Switch between Matlab Debugger, variable
live and environment explorer, graphical

simulator tools, etc.
Convert between Convert between

raw and calibrated hardware and
hardware data physics units

DEIE]

Some points borrowed from Greg Portmann,
management

pyML meeting Feb 12, 2024

Teresia Olsson, Accelerator Middlelayer Workshop 2024 4 HZB :: EiEgiiYS!urce

INTRODUCTION

WHO ARE THE MML USERS?

e Distributed all over the world.
* Wide range of experience (students —» experienced accelerator physicists).
* Different type of machines (storage rings, ramped machines, transfer lines).

Greg Portmann, “Matlab Middlelayer at Spear3, ALS,
Soleil and other Light Sources”, pyML meeting, Feb 12 2024

« MML target audience: non-professional programmers

« Who will maintain middlelayer? — at many labs this will be accelerator physicists

5 H ZB EEg?'iYSgu rce

INTRODUCTION

PYTAC + ATIP

Python toolkit for accelerator controls

Developed at Diamond Light Source
(EPICS facility)

Influenced by MML and APHLA (NSLS-II)
ATIP - simulator using pyAT

https://github.com/DiamondLightSource/pytac

https://github.com/dIs-controls/atip

BLUESKY + OPHYD

Python toolbox for experiment control and
scientific data acquisition

Collaboration with contributors from many
labs

So far focused on beamlines

Also so far focused on EPICS but
development ongoing for Tango

Ophyd - layer for hardware abstraction,
e.g. devices to use with bluesky

https://blueskyproject.io/

H ZB EEgi?ggu rce

https://github.com/DiamondLightSource/pytac
https://github.com/dls-controls/atip
https://blueskyproject.io/

TEST RESULTS

Teresia Olsson, Accelerator Middlelayer Workshop 2024 7 HZB - : EiEgiiYSgurce

—
TEST RESULTS

ORM IN MATLAB MIDDLELAYER

* Standardized measurement script: measbpmresp.m
* Functionality:

- User can use default settings but also customize measurement

- Automatically handles devices set to bad status

- Different options for how modulation should be done

- Different options for how to handle wait time for devices to be ready
- Handles analysis and data management

- Either hardware/physics units & live/simulator

- Pause measurement if current too low and prompt for injection

e Script already quite complex = actual measurement hidden among a lot of setup and data
management.

* Did not attempt to implement all of this functionality.

8 H ZB EEgi%YSgu rce

TEST RESULTS

REQUIRED STEPS

* Setup
- Setup for your machine (import data for elements, channels etc.)
- Setup the measurement (actuators, monitors, change magnitude etc.)

* Run measurement
- Set/read devices
- Wait/sleep to make sure you get correct data

 Data analysis & storage

- Post-process the measurement results
- Save the data for the future

9 H ZB EEgSh%YSgu rce

—
TEST RESULTS

PYTAC

e Machine data in CSV files (elements, families, channel names, conversion factors).

elements.csv unitconv.csv
Example for BESSY Il 7 B | ¢
. | A B C | D E F G H
1 LI type length 1 lelid field uc_type uc_id phys_units eng_units lower_lim upper_lim
2 IMRING START Marker 0 2 0s_position null om m
3 |DU_MSEPEXIT Drift 0.56 3 Obeta nul om m
4 NMSEREXIT =il] | Obeam ounentnul 0 A
elements.csv 5 |DU_FOMZ2D1R Drift 0.0555 g St o o o
: ; 6 |FOMZ2DIR Marker 0 7 985 null 0Hz Hz
epics_devices.csv 7 |DU_KIK3DIR Drift 0.245 8 | osof null OHz Hz
- : 991f null OHz Hz
Families.csv 8 |KIK3D1R Drift 0.595 190 i
. = ay poly 1GeV MeV
) i 9 |PU_KIK4DIR Drift 0.456 11 | 23bo poly 2m-1 A in inf
SImple_deVlCeS.cSV E N al W17 AAaA M Muifd [l =4al =4 12 52h0 p[jly 2m"-1 A -|nf |nf
5 H H 97b0 poly 2mh-1 A -inf inf
uc_pchip_data.csv epics_devices.csv }2 1280 poly 2mA1 A -inf inf
15 158b0 poly 2m"-1 A -inf inf
uc_poly data.csv A B C D E F 16 | 187h0 poly 2m-1 A -inf inf
: 1__lel_id name field get_pv set_pv 17 | 2280 poly 2m-1 A -int inf
unitconv.csv 2 0DCCT beam_current MDIZ3T5G:cument 18 ZGUEO po:y Zm,\'l A '!nI !HI
3 11BPMZ5DIR X BPMZ5D1R:rdX 19 | 290k0 poly Zm-1 A -inf L
4 11BPMZ5D1R BPMZ5D1R:rdY
5 13S4PDIR b2 S4PD1R:rdbk S4PD1R:set
6 13HS4P2D1IR x_kick HS4P2D1R:rdbk HS4P2D1R:set
7 15Q4PDIR bl Q4PD1R:rdbk Q4PDIR:set
8 17)S3PDIR b2 S3PD1R:rdbk S3PD1R:set
9 17VS3P2DIR y_kick VS3P2DLR:rdbk VS3P2D1R:set
10 19BPMZ6DIR X BPMZ6D1R:rdX
11 19BPMZ6DIR 1y BPMZ6D1R:IdY

« ESRF: conversion factors handled by separate package connected to Tango devices — not
tested together with pytac.

1 O H ZB EEgi%\;gu rce

—
TEST RESULTS

PYTAC

Courtesy of Jean-Luc Pons, ESRF
 Easy to modify to use with Tango.

v [pytac
> [0 .devcontainer

port load

port TangoControlSystem

ath(

control_system=TangoControlSystem(wait=True, timeout=)}

e init _.py
@ main_ .py

e

& cothread_cs.py

e CS.py

- pyTAC already ready for other control systems
e element.py

& exceptions.py
e lattice.py

e load_csv.py
e

& units.py

& utils.py set_single and read_single methods are the only control system dependent methods

11 H ZB EEgi?ggu rce

TEST RESULTS

PYTAC

* Very easy and quick to write a script to get the measurement done.

horStrs
verStrs

lattice.get elements("HCM")
lattice.get elements("VCM")

def get_orbit():
return lattice.get value(), lattice.get _value()

* But need to implement most functionality yourself - code will not handle wait time, current
limits etc.

 For example, no status attribute to quickly disable broken devices.
* No data management - code will not save metadata, results etc automatically.

1 2 H ZB EEg?'iYSgu rce

—
TEST RESULTS

BLUESKY

 Need Bluesky compatible devices (e.g. ophyd) —» ready-made devices exist only for beamline
components.

« HZB: easy to make simple devices but complex ones require a lot of work.
 ESRF: interface required to Tango, e.g. ophyd-tango (tests ongoing at HZB).

class Steerer(Device):
readback = Component(EpicsSignalRO, ":rdbk")

setporntis: Connonentilpiesslgnal st A device has components which can be used to
def set(self, setpoint): connect the device to the correct PVs.

Set the setpoint and return a Status object that monitors the readback.

Set the new value
self.setpoint.put(setpoint)
Return the Status object

status = Status(self,success=True, done=True)
return status

* Devices can handle a lot of functionality (status, wait time etc.) but you need to add it.

1 3 H ZB EEgi?ggu rce

L
TEST RESULTS

BLUESKY

* Difficulty: grouping of devices -» sometimes you end up with a chain of devices that you never
really wanted.

class AllSteerers(Device):

Need to create a dictionary of all the steerers and their PVs to feed into the DynamicDeviceComponent

class SelectedSteerer(Device):

def generate_definition(**kwargs):

steerer_def = {} t N - C t S . -L —_u n 'L s
hor_steerer names = ['HS4M2DIR','HSIMTIR', 'HSAMITIR', 'HS4M2TIR', 'HSIMD2R', 'HS4MID2R', 'HS4M2D2R', 'HSIMT2R', 'HSd steererName = Component(Signal, name="name", value='")
ver steerer names = ['VS3M2DIR', 'VS2M2DIR','VS2MITIR', 'VS3MITIR', 'VS3M2TIR', 'VS2M2TIR', 'VS2MID2R', 'VS3MID2R', '

for name in hor steerer names: def Set_Selected (SE].f, name) 5
PV d b d l th th &
e self.steerer = getattr(self.parent.steerers, name)
steerer_def[name] = (Steerer, ps_name, kwargs)

self.steererName.put(name)

for name in ver_steerer_names:
PVs named based on power supply name rather than magnet name

ps_name = name.replace("M", "P") def Set(Self, Value) H
steerer_def[name] = (Steerer, ps_name, kwargs) self .steerer. Set(value)
return steerer def D icDeviceC ¢ status = Status(self,success=True, done=True)
ynamiceviceComponen

steerers = DDC(generate definition()) return status
selected = Component(SelectedSteerer, name="selected") # This is required to be able to change the value of the se
To only read the value of the selected steerer def read(5e1f) B
_default_read_attrs = ("selected",)

method = getattr(self.steerer, "read")

Set which steerer that is selected " = me‘thod()
def set(self, name):

Set the steerer

e oy R # Need to rename the keys here otherwise key error

return r
Return the Status object

status = Status(self,success=True, done=True)

return status

Teresia Olsson, Accelerator Middlelayer Workshop 2024 14 HZB EiEgi?Ysgurce

—
TEST RESULTS

BLUESKY

* Specific workflow for how to run a measurement.
1. Write a plan RE = RunEngine()

. Set up callbacks (live output, live plotting etc.) e R e D

2
3. Send the plan to the Bluesky run engine. (B SR
4

] The run engine Wi” not retu rn the data def scan steerers(used steerers, orbit, rel change):
but a number (uid) which can be used for 5 in used_steerers:
tO EXtraCt the data frOm Storage_ yield from rel_scan([], getattr(steerers.steerers,s), -rel_change, rel_change, 2)

uid = RE(scan steerers(used steerers, orbit, rel change))

 Ready-made plans exist but not entirely adapted for our user cases - we often want to
change hundreds of devices after each other instead of a few together.

* But also starting blocks (stubs) exist that can be used to put together your own plan.

15 H ZB EEgSh%YSgu rce

—
TEST RESULTS

BLUESKY

* Bluesky has a whole framework for how to handle data (Documents) — includes both metadata
and measurement data.

* A run has three documents (start, event & stop) which are generated by the run engine.
 Can customize how and which data is stored.

* You get data out from a run by using Databroker - e.g. by the uid generated by the run engine.

 Works best when saving to database.
e It should also be possible to write directly to file, but we were not successful.

db = Broker.named('temp"')

RE. sUBScriberdb insert) Old option: pandas dataframe

Two options exist for how to setup the databroker

and they return the data in different formats
catalog = temp()

RE.subscribe(catalog.vl.insert) New option: xarray

1 6 H ZB EEgi%YSgu rce

—
TEST RESULTS

BLUESKY

* Issue: you need to make sure that you have collected the data with useful headers.

>>> d = pickle.load(open('/machfs/1livzzo/EBS/beamdyn/MDT/2024/2024_06_01/0RMdata_srmag hst-sf2 cl0-a § o
>>> d['table’] Very difficult to analyze

positions strength

Seqg_num

Which steerer was changed?
Which position is horizontal/vertical?

time steerers_steerers_HS4M2D1R_readback steerers_steerers_HS4M2D1R_setpoint

seq_num
1 2024-06-06 15:05:15.164999962 01 01 Much easier to analyze because you
2 2024-06-06 15:05:15.167530298 0.1 0.1 can filter the data using the headers

 Headers are however automatically generated if devices are setup in a good way -
data can be understood for years to come.

17 H ZB EEgi?ggu rce

—
TEST RESULTS

PYTAC + BLUESKY

* ldea: use the devices already setup by pytac to run
with Bluesky.

* Problem: Pytac devices are not Bluesky compatible
so needed wrappers around them.

 ESRF: worked but data management complicated
— issues with headers in the data.

 HZB: did not work due to conflicts between
cothread and Bluesky.
* For this to work well it is better to make pytac

compatible with Bluesky.

18

class Steerer(BlueskyInterface):

def init (self, name, pytacsteerer, field, **kwargs):
super().__init_ (**kwargs)

self.name = name

self.parent = None

self.pytacsteerer=pytacsteerer # pytac element, used to set/get strengths
self.field = field

def trigger(self):
return Status(success=True, done=True)

def read(self):
"""Return an OrderedDict mapping string field name(s) to dictionaries
of values and timestamps and optional per-point metadata.

print(self.name)
val = self.pytacsteerer.get_value(self.field)

return dict(strength=dict(value=val, timestamp=time.time()))
def describe(self):

"""Return an OrderedDict with exactly the same keys as the "“read'’

method, here mapped to per-scan metadata about each field.

return dict(strength={'source': 'steerer', 'dtype': 'number', 'shape’:)
def set(self, val):

self.pytacsteerer.set_value(self.field, val)

time.sleep(6) # hard coded for test
def stage(self, **kwargs):

super(). init (**kwargs)

pass

def unstage(self):
pass

H ZB EEgi?ggu rce

CONCLUSIONS

Teresia Olsson, Accelerator Middlelayer Workshop 2024 19 HZB :: EiEgiiYSgurce

CONCLUSIONS

Orbit bumps, tune, chromaticity,
response matrix etc.

WHAT DOES MML DO?

Hide control
system names

Orbit correction, BBA, LOCO etc.

Convert between
different element
name conventions

Handle wait time
when set/read
devices

Group
elements

| Collaboration
and sharing of

Store machine Switch ferells
configuration operational
(save/restore) modes
Switch between Matlab Deﬁugger, Varri]abltle
. . expiorer, grapnica
live and environment to(ﬁS, P

simulator

Convert between
hardware and
physics units

Pytac = red
Bluesky = purple
Both = orange

Data
management

Teresia Olsson, Accelerator Middlelayer Workshop 2024 20 HZB - - S

CONCLUSIONS

WHAT ASPECTS MADE A TOOL EASY TO USE?

An existing device layer — a lot of work if you have to write devices from
scratch and figure out how to make good ones.

Easy way to group devices together and iterate which one to use.
Way to run a measurement step-by-step in debugging mode.

“Someone” has already setup the data management for you - this is very
important and requires careful consideration.

21 HZB

BESSY Il
Light Source

CONCLUSIONS

CONCLUSIONS

 Middlelayer has to come with ready-made devices which easily can be grouped together —» no
“normal” user should have to write a device.

 Conversion between hardware and physics units should be handled in a separate layer.

 We need option to make quick scripts (set/read) but also more complex applications using a full
data management framework.

* Input from software engineers is crucial for getting good devices and data management.

* Training has to be fundamental part of the project — both software skills and better data
management.

 How to balance choice of software solutions vs users/developers software skills?
2 2 H ZB EEgSh?YS!u rce

	BESSY II & MLS
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

