ML Python package Xopt for online tuning*

Ryan Roussel

rroussel@slac.stanford.edu 6/20/2024

*and some other stuff

Machine Learning Based Accelerator Control

What is Xopt?

- Flexible framework for optimization of arbitrary problems using python
- Independent of problem type (simulation or experiment)
- Independent of optimization algorithm + easy to incorporate custom algorithms
- Easy to use text interface and/or advanced customized use for professionals

Overview

Xopt algorithm implementation

https://christophermayes.github.io/Xopt/

Accelerator simulation

Production ready control Online Control R&D Python interface # create Xopt object. X = Xopt(YAML) # take 10 steps and view data for _ in range(10): X.step() X.data

Arbitrary problem

Technology Transfer Between Accelerator Facilities

Xopt structure

Note: this process can also be done asynchronously

Xopt Script Overview – Defining the problem

Xopt Script Overview – Defining the algorithm

Choose from available generators (or define your own)

- Optimization algorithms:
 - Genetic algorithms
 - cnsga Continuous NSGA-II with constraints
 - Bayesian optimization (BO) algorithms:
 - upper_confidence_bound BO using Upper Confidence Bound acquisition function (w/ or w/o constraints, serial or parallel)
 - expected_improvement BO using Expected Improvement acquisition function (w/ or w/o constraints, serial or parallel)
 - mobo Multi-objective BO (w/ or w/o constraints, serial or parallel)
 - bayesian_exploration Autonomous function characterization using Bayesian Exploration ARTICLE FREE
 - mggpo Parallelized hybrid Multi-Generation Multi-Objective Bayesian optimization
 - multi_fidelity Multi-fidelity single or multi objective optimization
 - BAX Bayesian algorithm execution using virtual measurements
 - BO customization:
 - Trust region BO
 - Heteroskedastic noise specification
 - Multiple acquisition function optimization stratigies
 - extremum_seeking Extremum seeking time-dependent optimization
 - rcds Robust Conjugate Direction Search (RCDS)
 - neldermead Nelder-Mead Simplex

Ryan Roussel, Auralee L. Edelen, Tobias Boltz, Dylan Kennedy, Zhe Zhang, Xiaobiao Huang, Daniel Ratn Nikita Kuklev, Jose Martinez, Brahim Mustapha, Verena Kain, Weijian Lin, Simone Maria Liuzzo, Jason St

Xopt Script Overview – Putting it all together

In [5]:

from xopt import Xopt
X = Xopt(vocs=vocs, generator=generator, evaluator=evaluator)

Evaluate explicit points

In [10]: # evaluate some points additionally
points = {"x1": [1.0, 0.5, 2.25],"x2":[0,1.75,0.6]}
X.evaluate_data(points)

Visualize results

view objective values
X.data.plot(y=X.vocs.objective_names)

view variables values
X.data.plot(*X.vocs.variable_names, kind="scatter")

Run optimization

In [12]:

https://christophermayes.github.io/Xopt/ examples/basic/xopt_basic/ # Take one step (generate a single point)
X.step()

Example: Online Optimization at SLAC - Setup

Create beam size objective function

```
from epics import caput, caget many
from time import sleep
import numpy as np
def eval beamsize(inputs):
        global image diagnostic
        # set PVs
        for k, v in inputs.items():
            print(f'CAPUT {k} {v}')
            caput(k, v)
```

Set beamline parameters

sleep(2.0)

Wait for power supplies/feedback to settle

```
# get beam sizes from image diagnostic
metadata = inputs
results = image diagnostic.measure beamsize(5, **metadata)
results["S x mm"] = np.array(results["Sx"]) * 1e-3
results["S y mm"] = np.array(results["Sy"]) * 1e-3
```

Calculate the objective

```
# add total beam size
results["total size"] = np.sqrt(np.array(results["Sx"]) ** 2 + np.array(results["Sy"]) ** 2)
# results["total size"] = np.sqrt(np.abs(np.array(results["Sx"])) * np.array(results["Sy"]))
return results
```

Image measurement class

SLAC

class ImageDiagnostic(BaseModel): screen name: str array data suffix: str = "Image:ArrayData" array n cols suffix: str = "Image:ArraySize0 RBV" array n rows suffix: str = "Image:ArraySize1 RBV" resolution suffix: Union[str, None] = "RESOLUTION" resolution: float = 1.0 beam shutter pv: str = None extra pvs: List[str] = [] background file: Optional[str] = None save image location: Optional[str] = None roi: Optional[ROI] = None Measure beam size def measure_beamsize(self, n_shots: int = 1, fit_image=True, **kwargs): conduct a multi-shot measurement to get the beam size from images, r sizes in units of `resolution` allows attaching extra information to dataset via kwargs

11

100

80

Example: Online Optimization at SLAC - Results

Results data frame (incl. metadata)

SOLN:IN20:121:BCTRL		0.474877
QUAD:IN20:121:BCTRL		-0.00484
QUAD:IN20:122:BCTRL		0.0018
QUAD:IN20:361:BCTRL		-3.16
QUAD:IN20:371:BCTRL		2.53527
QUAD:IN20:425:BCTRL		-1.1
QUAD:IN20:441:BCTRL		-0.81186
QUAD:IN20:511:BCTRL		3.649406
QUAD:IN20:525:BCTRL		-3.252219
Cx		479.324935
Sy		136.386527
bb_penalty		-145.364148
total_intensity		1245909.6
log10_total_intensity		6.095487
save_filename		/home/physics3/ml_
S_x_mm		0.175659
S_y_mm		0.136387
total_size		222.390057
xopt_runtime		6.993356
xopt_error		False

Objectives

X.data.plot(y="total_size")

X.data.plot(y=X.vocs.variable_names)

60

... can dump data to database / xarray instead of pd.DataFrame

-2

0

20

Variables

Visualization

-SLAC

Pydantic Integration

Xopt objects are robustly validated and serialized/de-serialized via Pydantic

A Pydantic

YAML file

x1: [0, 3.14159] x2: [0, 3.14159] c1: [GREATER_THAN, 0] c2: [LESS_THAN, 0.5] constants: {a: dummy constant}

Cx: 11: 378,5739219281 '10': 420.7214465998 '100': 438.3514501154 '101': 466.4557444371

SLAC

YAML file

xopt: xopt: max evaluations: 6400 max evaluations: 6400 Python object(s) generator: generator: name: cnsga name: cnsga population size: 64 population size: 64 X = Xopt.from yaml(open("my file.yml")) population_file: test.csv population file: test.csv fig, ax = X.generator.visualize model(output path: . output path: . variable names = X.vocs.variable names evaluator: evaluator: function: xopt.resources.test functions.tnk.evaluate TNK function: xopt.resources.test functions.tnk.evaluate TNK function kwargs: function kwargs: raise probability: 0.1 raise probability: 0.1 X.dump() vocs: vocs: data: variables: variables: x1: [0, 3.14159] x2: [0, 3.14159] objectives: {y1: MINIMIZE, y2: MINIMIZE} objectives: {y1: MINIMIZE, y constraints: constraints: c1: [GREATER THAN, 0] c2: [LESS THAN, 0.5] linked variables: {x9: x1} linked variables: {x9: x1} constants: {a: dummy constant}

Example: BO w/ introspection

from xopt.evaluator import Evaluator
from xopt.generators.bayesian import UpperConfidenceBoundGenerator
from xopt import Xopt

evaluator = Evaluator(function=sin_function)
generator = UpperConfidenceBoundGenerator(vocs=vocs)
X = Xopt(evaluator=evaluator, generator=generator, vocs=vocs)

```
for i in range(n_steps):
    model = X.generator.train_model()
    fig, ax = X.generator.visualize_model(n_grid=100)
    # add ground truth functions to plots
    out = test_function({"x": test_x})
    ax[0].plot(test_x, out["f"], "C0-.")
```

ax[1].plot(test x, out["c"], "C2-.")

```
# do the optimization step
X.step()
```


https://christophermayes.github.io/Xopt/examples/single_objective_bayes_opt/constrained_bo_tutorial/

Example: Automatic Characterization w/ Constraints

AWA Example

- photoinjector characterization for model calibration

FACET-II Example

Setting changes on 10 variables (solenoid, bucking coil, corrector quads and matching quads)

2 hrs for 10 variables vs. to 5 hrs for 4 variables with N-D parameter scan

Example: Trust Region BO

Control Room Optimization w/ Badger - Interface

Control Room Optimization w/ Badger – Routine

Routine Specification

Search + rustling-sidewinder 11/08/2023.10-18-08	History	Badger Vol.11-072,2715566E (Dopt V2.2011-200 apt8980dab) Run (Badger Opt-2022-11-08-103539 yent) Run Montor (Badger Editor) Isadas		Routi	ine metadata
glofoldus-capybara-max		ama my frat sudna My vay first sudnat Update Igorithm mitemateria v VOCS		Algor	ithm specification
	P	ame sphore, 3d .	\rightarrow	Algorithm Name	upper_confidence_bound
		arithets Filter unstables_ Filter unstables_ Name Mor Mar Ø 1.0000 1.0000 Ø 0.0 1.0000		Params	model: null n_monte_carlo_samples: 128 turbo_controller: null use_cuda: false gp_constructor: name: standard use_low_noise_prior: true covar_modules: {} mean_modules: {} trainable_mean_keys: [] numerical_optimizer: name: LBFGS n_restarts: 20 Term iter 2000
		Name Bue MANAZZ	Variables / co objectives sp	onstr	aints / cation
6 6		current routine: glorious-capybara-max			

Example: LCLS-II Optimization w/Badger

- Maximize 80th percentile FEL energy using a set of quadrupoles (integrated over 100 pulses)
- Includes a constraint on the FEL pulse intensity jitter

Connecting Machine Operation to Badger

class Environment(environment.Environment):

```
name = 'sphere 3d' # name of the environment
variables = { # variables and their hard-limited ranges
    'x0': [-1, 1],
    'x1': [-1, 1],
    'x2': [-1, 1],
observables = ['f'] # measurements
```

Simple python interface to define problem variables / observables (objectives/constraints) \rightarrow populates Badger fields # Variable getter -- tells Badger how to get current values of the variables def get_variables(self, variable_names): variable outputs = {v: self. variables[v] for v in variable names}

```
return variable_outputs
```

```
# Variable setter -- how to set variables to the given values
def set_variables(self, variable_inputs: dict[str, float]):
    for var, x in variable inputs.items():
       self. variables[var] = x
```

```
# Filling up the observations
f = self. variables['x0'] ** 2 + self. variables['x1'] ** 2 + \
    self. variables['x2'] ** 2
```

```
self. observations['f'] = [f]
```

```
# Observable getter -- how to get current values of the observables
def get observables(self, observable names):
    return {k: self._observations[k] for k in observable_names}
```

SLAG

Xopt Summary

Simple to connect with simulations / machine (single python function!)

```
evaluate(inputs: dict) -> dict
```

https://christophermayes.github.io/Xopt/

Future Work Additional optimization algorithms

- Reinforcement learning
- Adv. Bayesian optimization
- Genetic algorithms
- Asynchronous optimization
- Improve interoperability
 - Generator standards (optimus, libensemble)
 - Surrogate model packages (LUME)
- Leverage pyML tools

-SLAC

Modeling Hysteresis in Accelerators

Modeling SLAC Quadrupoles

Polynomial fit error: 0.23% Train error: 0.015% Test error:

Test error: 0.051%

Full Stack Hysteresis Modeling

Modeling w/o Hysteresis

Modeling w/ Hysteresis

Questions?

-SLAC

Thanks to the team!

Note: there are another applications of machine learning in python middle layer processes.

Multi-Objective Optimization

Determine the optimal trade-off between objectives -> the Pareto front

Bayesian Algorithm Execution (BAX)

Autonomous Operation of AWA

(2),(3),(5) --> demonstrated (1),(4),(6) --> in progress

Incorporating Physics Information into Kernels

Enforce linear centroid response to steering magnets

Enforce quadratic beam size squared response to quadrupole magnets

Combining GP Modeling with Neural Networks

We can specify a **prior mean** function to bias the model where data does not exist

Using a NN prior improves optimization performance even with limited model accuracy; can adapt to bad models

Example Use Case: Automated Quadrupole Scans

Example: Automate quadrupole scan measurements starting from a single valid measurement

- Independent of upstream accelerator parameter configuration
- Bayesian Exploration w/constraints
- Enforce quadratic dependence using kernel
- Can be extended to include other accelerator parameters (solenoid, skew quad, etc.) to do full emittance characterization
- Can tune safety factor as necessary for critical constraints

Warning: Requires $\alpha(x) \ge 0$

Proximal Biasing

Poor optimization behavior for experimental beamlines

Weight the acquisition function by travel distance \rightarrow better than hard limits

$$\hat{\alpha}(x) \to \alpha(x) \exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right)$$

-SLAC