
Python control tools at SIRIUS
Fernando Henrique de Sá,

on behalf of the SIRIUS Team

fernando.sa@lnls.br

Accelerator Middle Layer Workshop
DESY Hamburg (DE), June 19-21, 2024

CNPEM campus

SIRIUS design parameters
Energy 3.0 GeV
Circumference 518.4 m
Emittance 250 pm.rad
Current (top-up) 350 mA

• Green-field facility

• Construction: 2012 – 2020

• Cost: US$ 500M (∼85% spent in Brazil)

• 1st regular users call: Nov. 2022

• 10 beamlines in operation

• 100 mA in top-mode mode, uniform fill

• Phase-1 (end of 2024): 14 beamlines

Campinas
Brazil

SIRIUS – 4GSR in Operation

Brazilian Center for Research in
Energy and Materials (CNPEM)

2

UVX, 2nd generation light
source (1997-2019)

• In UVX → AT and MML (no python);

• 2011-2012: SIRIUS project → large simulations (DA and MA) → AT + Tracy3;

• 2013: trackcpp + (pyaccel and pymodels) → first SIRIUS models in python;

• 2014:

✓ expansion of pyaccel→ python for automated update of wiki SIRIUS parameters;

✓ trackcpp substitutes Tracy3→ incentive for python usage → DA and MA analysis migrated to
python;

✓ pyjobs: python server to distribute and manage SIRIUS simulations on PCs of CNPEM campus;

• 2015: virtual accelerator (VACA) → first contact with pcaspy and pyepics→ siriuspy is created;

• 2016: good experience with pcaspy→ all soft IOCs + PS IOCs in python →machine-applications creation;

• 2017: CS-Studio very disappointing → discovery of PyDM from SLAC → all control GUIs in python;

Short history of python usage for SIRIUS

3
https://github.com/slaclab/pydmhttps://github.com/paulscherrerinstitute/pcaspy

https://github.com/slaclab/pydm
https://github.com/paulscherrerinstitute/pcaspy

Overview of SIRIUS Software

4

siriuspy

trackcpp

pyaccel

pymodels

apsuite

mathphys

pycolleff

machine
applications

siriushlasiriushlafac

Configurations
Database

Archiver

Control System
Constants

ipython

simulation

machine control

network services

IOCs

Libraries

experiments

CS-StudioEDM

EPICS Base IOCs

Scripting

GUI:
libraries
and apps.

A B : A uses B… Python env. … Non-python env.legend

EPICS IOCs

idanalysis

...

jupyter

vscode scripts

Python code development strategy

5

• Principles:
o Reuse existing code whenever possible;
o Implement code as library instead of script;
o Follow the coding style guidelines (documentation still not

complete and logging still not standardized);

What
type of
script?

New simulation,
experiment or
control process

Create a script or
notebook using
existing library

When script is mature
enough, transform it

in a library

Create a class or
function in pyaccel

Create module or
subpackage in

apsuite

Particular
for

SIRIUS?

GUI or
IOC

needed?

GUI
needed?

Create soft IOC
in machine
applications

Create GUI in
siriushla

Create GUI in
siriushlafac

Y

N

Y

Simulation

Experiment

Control

Y, GUI

Y, IOCCreate module
or subpackage

in siriuspy
Coding principles are

enforced here, via pull
request analysis on github.

Packages statistics

6

Package Github page Version Pull Requests Commits Files Lines

siriuspy https://github.com/lnls-sirius/dev-packages 2.89.0 1062 9027 816 166934

siriushla https://github.com/lnls-sirius/hla 1.1.0 674 4770 535 351650

machine-applications https://github.com/lnls-sirius/machine-applications 3.48.0 285 2089 339 34831

apsuite https://github.com/lnls-fac/apsuite 2.51.0 271 1872 96 29853

pyaccel https://github.com/lnls-fac/pyaccel 3.18.1 93 613 43 14258

pymodels https://github.com/lnls-fac/pymodels 1.18.1 84 661 43 8879

trackcpp https://github.com/lnls-fac/trackcpp 4.10.4 48 323 67 39593

mathphys https://github.com/lnls-fac/mathphys 2.9.0 26 233 25 7775

siriushlafac https://github.com/lnls-fac/hlafac 0.10.1 22 336 17 1713

• All repositories are available at Github;

• Most of the code was developed over the last 10 years by 4 or 5 people, on average;

• Recently (last two years), developers' community inside LNLS has grown with the creation of a software group;

• Periodic deploy (~ 1 per month) in control room PCs with ansible;

• IOCs run in docker containers in dedicated workstations. Deploy whenever needed;

https://github.com/lnls-sirius/dev-packages
https://github.com/lnls-sirius/hla
https://github.com/lnls-sirius/machine-applications
https://github.com/lnls-fac/apsuite
https://github.com/lnls-fac/pyaccel
https://github.com/lnls-fac/pymodels
https://github.com/lnls-fac/trackcpp
https://github.com/lnls-fac/mathphys
https://github.com/lnls-fac/hlafac

7

High-level control

Structure of siriuspy

8

Library that transforms EPICS PV names into
objects with properties that allow identification of the
meaning of that PV, according to the naming
system defined for SIRIUS.

siriuspy

clientweb

clientconfigdb

clientarch

epics

namesys

devices

…

Libs for specific
control routines

…

Structure of siriuspy

9

Library for interaction with
web server that provides tables
of control system constants,
such as:
• Magnet excitation curves
• Magnet cycling parameters
• Mapping of equipment

connections and positions

Abstraction layer over pyepics

siriuspy

clientweb

clientconfigdb

clientarch

epics

namesys

devices

…

Libs for specific
control routines

…

Structure of siriuspy

10

Library for interaction with web
server that provides access and
control of Mongo database where
machine configuration files are
saved.

Examples of configuration types:
- PVs defining machine state
- orbit response matrices
- orbits and trajectories of interest
- ID feedforward tables
- booster ramp parameters

siriuspy

clientweb

clientconfigdb

clientarch

epics

namesys

devices

…

Libs for specific
control routines

…

Structure of siriuspy

11

Interacts with a set of EPICS PVs from the
same device or set of devices and group
them in a single python object (similar to
ophyd and class Device from pyepics).

siriuspy

clientweb

clientconfigdb

clientarch

epics

namesys

devices

…

Libs for specific
control routines

…

Structure of siriuspy

12

siriuspy

clientweb

clientconfigdb

clientarch

epics

namesys

devices

…

Libs for specific
control routines

…

Interacts with a set of EPICS PVs from the
same device or set of devices and group
them in a single python object (similar to
ophyd and class Device from pyepics).

13

Examples of high-level control tasks

Common Tasks Performed by Soft IOCs

14

• Distributed systems architecture abstraction and orchestration: timing, FOFB, orbit interlock;

Common Tasks Performed by Soft IOCs

15

• Distributed systems architecture abstraction and orchestration: timing, FOFB, orbit interlock;

Common Tasks Performed by Soft IOCs

16

• Distributed systems architecture abstraction and orchestration: timing, FOFB, orbit interlock;
• Conversion from hardware to physics units: power supplies, pulsed magnets, etc;
• Subsystems diagnostics: power supplies, RF, pulsed power supplies, LINAC devices, etc.;
• Calculation of lifetime, integrated stored current, injected current, etc.;
• Slow orbit correction and orbit response matrix measurement;
• Injection trajectory (TbT) analysis and correction;
• Calculation of injection efficiency between accelerators;
• Correction of position and angle of injected beam;
• Tune and chromaticity correction;
• …

Common Tasks Performed by GUIs

17

• Booster ramp configurations management and tuning;

Common Tasks Performed by GUIs

18

• Booster ramp configurations management and tuning;

Common Tasks Performed by GUIs

19

• Booster ramp configurations management and tuning;
• Power supplies testing, turn-off and turn-on routines;
• Save & restore machine configurations;

• Magnets cycling and standardization;

20

Experiments control

21

Structure of apsuite

Contains classes to drive specific experiments

Contains classes of generic optimization algorithms
(e.g., RCDS, Simulated annealing, scanning, PSO)

Defines base
classes for
optimization and
commisslib.
Standardize how
data and
metadata is saved
and loaded.

apsuite

utils.py

optimization

commisslib

…

Simulation and
LOCO packages…

Data organization for experiments

22

• Shared folder among all PCs of the control room;
• Also mounted read-only in our PCs;
• Backup saved every day;
• All experiments should have its own folder:

• With name starting with the date and a short description;
• Should contain script that ran the experiment and data + figures + processing files + etc. created;

• Easy to find similar experiments done in the past;
• Reuse and adapt old scripts made in previous experiments;

23

Examples of experiments

Experiments performed by scripts/notebooks

24

• Acquisition of synchronized fast orbit or trajectory (TbT) from all BPMs;
• Measurement of orbit response matrix using AC excitation of correctors;

• LOCO analysis;
• BBA of storage ring BPMs;

Experiments performed by scripts/notebooks

25

• Acquisition of synchronized fast orbit or trajectory (TbT) from all BPMs;
• Measurement of orbit response matrix using AC excitation of correctors;

• LOCO analysis;
• BBA of storage ring BPMs;

Experiments performed by GUIs

26

Summary
• Python is the most used language for the SIRIUS high-level control system:

• Span over simulation, experiments and control;

• Provides a very versatile and flexible environment for developing new tools and perform complex
tasks;

• The code development workflow from scripting to library or GUI is well-defined and encouraged:

• Code duplication is very rare;

• Creation of applications for non-expert users is possible;

• Use of basic libraries in scripts still possible;

• Experiments control and data organization:

• apsuite defines a standard way of saving data and metadata and creating experiment drivers;

• Current methods does not handle partial loading of saved data. This feature would be useful;

• Use of shared folder in control room PCs works well to separate and store experiment data, but does
not provide security against accidental data losses;

27

Summary

• siriuspy works well as an architecture and control system abstraction layer:

• devices and epics subpackages abstract EPICS;

• clientconfigdb and clientweb abstract configurations and constants servers.

• Several high-level control tasks already performed by soft IOCs or servers;

• Regarding virtual simulators:

• Seamless exchange between real machine and virtual accelerator (VACA) via VACA_PREFIX
environment variable existed in the past. However, VACA was discontinued a few years ago;

• Use of virtual twin simulator is desired, but most of the measurements we develop nowadays
involves acquisition of synchronized fast orbit, TbT, or bunch-by-bunch data. A virtual twin in a future
middle-layer with such capabilities would be very useful.

• In my perspective, the decision we took 10 years ago to move towards python and away from MATLAB
really paid off!

• I hope we can contribute with the community in the creation of a general python middle layer.

28

Thank you for your attention!

Thanks also to Ana Clara Oliveira for helping with the preparation of this presentation!

29

	Slide 1: Python control tools at SIRIUS
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Summary
	Slide 28: Summary
	Slide 29: Thank you for your attention!

