
Python tool experience at NSLS-II 
and new feature suggestions

June 20, 2024 @ Accelerator Middle Layer Workshop

Yoshiteru Hidaka
NSLS-II



Outline
• Python middle layer at NSLS-II

• History
• Example
• Interfaces / Services
• Thoughts / Lessons Learned

• New Feature Suggestions

2



Brief History of Python Middle Layer @ 
NSLS-II
• aphla: Accelerator Physics High-Level Applications

• Developed for NSLS-II commissioning and beam studies mainly by Lingyun Yang & 
Guobao Shen, starting in 2010 (also contributions by J. Choi, Y. Hidaka, G. Wang).
• https://accelconf.web.cern.ch/ipac2012/papers/thppr018.pdf

• Python selected as main language, though MATLAB Middle Layer (MML) and 
ELEGANT/SDDS kept for transition, collaboration, and fallback.

• Simulation engines (AT, ELEGANT, Tracy, etc.) were not integrated / interfaceable.
• NSLS-II SR commissioning in 2014.
• Only used at NSLS-II.
• Active development stopped when L. Yang left in 2016.
• pytac development @ Diamond, influenced by aphla, starting in 2017.

• Disclaimer about myself: 
• Opinions expressed in this talk are mine, not NSLS-II as a whole.
• No formal computer science education.
• MATLAB main until switching to Python in 2011. Only limited experience with MML.
• Maintaining NSLS-II aphla database since 2016.

• Plan to switch this year to v2 for easier database update. No plan for continued development.
3

https://accelconf.web.cern.ch/ipac2012/papers/thppr018.pdf


Example: Dispersion Measurement

4
L. Yang, et at. ICALEPCS2013, TUPPC130 (2013)

ap.machines.load(“nsls2”, “SR”) [Loading from database, construct machine object]
[Search and collect elements of your interest]



Interfaces
• Jupyter Notebooks, IPython (interactive consoles)

• Most interactive / easy to modify
• Notebooks

• Act as experiment log books
• Most-often-used code-exchange format between physicists
• Hard to debug interactively

• Scripts
• Very interactive & easy to debug, if paired with IDE (e.g., VS Code).
• Easy to port finished scripts to run on IOC servers as production programs.

• GUI
• A handful of Python GUIs developed, but no longer used except for machine 

snapshot/restore & booster ramp manager.
• Replaced by CSS (Control System Studio, a.k.a. CS-Studio, or Phoebus) panels
• CSS / MATLAB GUI: development / maintenance much easier (though limited customizability)
• Python GUI:

• Too many frameworks – hesitant to invest in one.
• Full-featured frameworks like PyQt: Steep learning curve => time sink & most users cannot modify / 

debug.
• Hard to: debug (non-Python parts, multi-threads, etc.), test (difficult to automate), maintain (keeping 

up with dependency upgrades) 5



Services
• MASAR (Machine Snapshot, Archiving, and Retrieve: https://github.com/epics-

base/masarService)
• Used daily for operation and beam studies.
• Still in Py2/PyQt4 => need upgrade to Py3/PyQt6

• or switch to Phoebus Save-and-Restore or a Bluesky-based solution?
• Virtual accelerator

• Only utilized for tests before commissioning
• Planned to be used as online calculator after commissioning, but not being used (most 

likely offline)
• Unit conversion (for magnet strengths: A, T, 1/m, etc.)

• Not being used (offline).
• Locally converted with aphla.

• Lattice / model (Twiss based on power supply setpoint / readback)
• Not being used (still online, but PVs not updated)
• Most of the time, pre-compute quantities of interest and save / load from files.

• Python high-level application services still running on IOCs:
• Dispersion measurement, chromaticity measurement / adjustment, tune measurement / 

adjustment / feedback, slow orbit feedback, ...
6

https://github.com/epics-base/masarService
https://github.com/epics-base/masarService
https://control-system-studio.readthedocs.io/en/stable/app/save-and-restore/app/doc/index.html


Thoughts on Services
• Model / Simulator on remote server: personally prefer local over remote

• Local:
• Full knowledge on what's happening with the model.
• Under full control (somebody else could be controlling a shared virtual accelerator).
• Can be offline.

• Remote:
• Necessary for heavy calculations (particularly if in need of parallel computations with clusters)
• Necessary if computed quantities need to be used by many people or other services.

• On-demand calc. or caching is better; continuous calc. wasteful, if not being used continuously.
• Need to learn another interface (i.e., extra friction for development).
• All features / controls may not be made available.

• If developing services (or any investment-heavy programs like GUIs), make 
sure they will be used by many and/or part of critical infrastructure.
• Otherwise, they will be abandoned quickly once there is no expert / time.

• "Service-later" approach seems better
• First develop local features, then later elevate to services if deemed useful / necessary.
• More resilient against service outage / obsolescence.

7



Other Thoughts / Lessons Learned
• aphla not easy to add/modify machine elements into centralized database 

(pytac seems more intuitive)
• One reason switching from SQLite to dict/list/numpy in YAML/pickle as database.
• Will encourage undesirable PV-centric (vs. element-centric) script writing.

• Utilize caching:
• Faster aphla startup by loading machine object from a pickle cache file to avoid slow 

object construction from database files.
• Methods (object-oriented prog.) vs. functions for high-level applications (HLA)

• A many-step HLA can require lots of variables to be passed btw. each func. -> Fewer 
inputs/outputs with methods -> Easier to read

• Method overriding should be useful for customization at a different facility.
• caget / caput

• for-loop vs. parallelization – reduce initial connection penalty
• caput (cothread package) occasionally not taking effect in interactive consoles until next 

caget – extra caget line after every caput

8



9

New Feature Suggestions



Nice-to-have Features
• caput live/offline switch – avoid accidental writing during operation
• Customizable "wait" functions for different programs / facilities

• Allow different methods: Fixed time (w/ timeout), "ready" PVs, timestamp 
change, setpoint-readback diff., etc.

• Easiest to implement functions as class methods with method overriding?
• Time flow speedup for simulation mode.

• Interactive documentation w/ customized LLM (e.g., ChatGPT)
• May miss existing functions if right keywords are not used in traditional doc.
• Customized tutorial based on what you want to do.

• Enforcement of units (dimensions)
• Scenario injections

10



11

Units
• Enforce to use “unit” objects for every float value of 

input/output function arguments
• NOT about unit conversions between engineering and physics 

units (e.g., Ampere to/from mrad)
• NSLS-II: RF frequency (Hz, GHz), BPM (mm, um, nm), ID 

gaps (mm, um), etc.
• aphla: Can associate units, but info stored as strings
• Pros for developers:

• No more manual unit conversion.
• Avoid logical coding errors.

• Pros for users:
• No more wondering (or reading help) about whether to convert 

BPM data from [mm] to [m], etc. before passing as input arguments.
• Cons for developers / users:

• Frustrating before getting used to always associating units.
• Potentially slow down computations for large arrays.



12

Units (cont'd)
• Potential packages for unit handling: 

• Pint [https://github.com/hgrecco/pint]
• Used in aphla-v2, simple to use, pure Python

• astropy.units
• A sub-package of astropy, requires installation of astropy

• unyt [https://arxiv.org/pdf/1806.02417]
• Good summary & comparison among these packages

https://github.com/hgrecco/pint
https://arxiv.org/pdf/1806.02417


13

Scenario Injections
• Inject artificial machine states by applying a pre-defined sequence of state 

modifications at checkpoints embedded in high-level applications.
• Very useful for offline testing of complex programs that:

• are typically operation-oriented
• as opposed to measurement scripts run by physicists only during beam study shifts: 

sequential, under full control, not as many exception handling, mistakes tolerable
• Example: Unified orbit feedback (UOFB) at NSLS-II

• require handling of
• on-demand user requests

• Examples:
• Enabling / disabling beamline local bump feedback
• Switching between RF-BPM and X-ray BPM bump feedback
• Local bump adjustments, etc.

• machine condition changes (both expected & unexpected)
• Examples:

• Sudden beam dump or dropout => Need to abort the whole program.
• ID gap moves too much while in X-ray BPM bump feedback mode => Need disabling of the 

bump feedback (not the entire program).



Summary

14

• NSLS-II has been using in-house developed package aphla as our 
Python middle layer since commissioning in 2014.

• Provided some thoughts and lessons learned based on our 10-year 
Python experiences for machine control.

• Ready to contribute and migrate to a new standardized Python middle 
layer in this collaborative effort.

• New potentially useful features have been also suggested / requested 
as part of the new development.

Thank You!


	Python tool experience at NSLS-II and new feature suggestions
	Outline
	Brief History of Python Middle Layer @ NSLS-II
	Example: Dispersion Measurement
	Interfaces
	Services
	Thoughts on Services
	Other Thoughts / Lessons Learned
	New Feature Suggestions
	Nice-to-have Features
	Units
	Units (cont'd)
	Scenario Injections
	Summary

