At which pseudorapidities should we look if we want to see π^0 at maximal energy?

Following up on Marcel's work...

Clara Leitgeb

HUMBOLDT-UNIVERSITÄT ZU BERLIN

Humboldt University Berlin, 18.1.2023

Which Frame?

PYTHIA 8.3 Simulations

pp central collision: $\sqrt{s} = 43.3 \text{ GeV}$ Lab = COM frame: $E_{\text{beam 1}} = E_{\text{beam 2}} = 21.66 \text{ GeV}$

✓ Fixed target simulation in COM frame ≡ central collision simulation

> Lower end of spectrum $\sim \frac{m(\pi^0)}{E_{\rm beam}}$

- $\checkmark~~{\rm Fixed}$ target lab frame: $\sim 1.35\cdot 10^{-4}$
- \checkmark COM frame: $\sim 6.23 \cdot 10^{-3}$

pp fixed target collision: $\sqrt{s}=43.3\,{\rm GeV}$

Lab frame: $E_{\text{beam}} = 1 \text{ TeV}$, $E_{\text{target}} = 0 \text{ TeV}$ $E(\pi^0)$, E_{beam} , $\eta(\pi^0)$ in lab frame:

Which Frame?

Marcel's Plots

- $ightarrow \ \eta$ -binned distributions are in COM frame
- \rightarrow Total distribution is in lab frame

Higher η bins in my plots visible than in Marcel's plots?

n-Bins

Marcel's derivation:

$$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right) = \frac{1}{2}\ln\left(\frac{|p|+p_z}{|p|-p_z}\right) \approx \frac{1}{2}\ln\left(\frac{E+p_z}{E-p_z}\right)$$

$$= \frac{1}{2}\ln\left(\frac{(E+p_z)^2}{E^2-p_z^2}\right) \approx \frac{1}{2}\ln\left(\frac{s}{m^2}\right) = \ln\left(\frac{\sqrt{s}}{m}\right)$$

$$= \frac{1}{2}\ln\left(\frac{(E+p_z)^2}{E^2-p_z^2}\right) \approx \frac{1}{2}\ln\left(\frac{s}{m^2}\right) = \ln\left(\frac{\sqrt{s}}{m}\right)$$

$$= \frac{1}{2}\ln\left(\frac{(0.1\sqrt{s})}{m_z}\right) \approx \ln\left(\frac{\sqrt{s}}{m_z}\right)$$
Eq. (1) Schematic of Pseudoranidity
$$\ln\left(\frac{0.1\sqrt{s}}{m_z}\right) < \eta < \ln\left(\frac{\sqrt{s}}{m_z}\right)$$

Observation:

HUMBOIDT.

UNIVERSITÄT

 $(E(\pi^0) + p_z(\pi^0))^2 = s$: assumes π^0 inherits ~ all energy from beam particle (only valid for π^0 in COM frame) In fixed target $E_{\text{beam}} = 1 \text{ TeV}$ case: $\ln\left(\frac{\sqrt{s}}{m(\pi^0)}\right) \approx 5.8$

Maybe should check η -"cutoff" in a different way?

We are interested in expected $\eta(\pi^0)$ for highest energy pions!

 \rightarrow Plot η in energy bins! (COM frame)

Observations:

- > $\eta(\pi^0)$ is not just growing with $E(\pi^0)/E_{\text{beam}}$
- > $\eta(\pi^0)$ seems to approach a certain value for high energies

Some Thoughts... How do these two plots fit together?

- > High η -bins in left plot correspond to "summed up" tails of energy bins in right plot
- ightarrow contributions for higher η come from many different energy bins in right plot
- ightarrow Hence energy distributions in left plot get flatter for higher η
- > What we are really interested in is expected η -range for π^0 close to beam energy
- $ightarrow \,$ does not necessarily coincide with highest possible η

 $\rightarrow_{\text{updates}} \text{Interested in } \eta \text{-composition at energy cut-off rather than } \eta \text{-cutoff} \\ \text{Interested in } \eta \text{-cutoff} \\ \text{Interested in product of the work of the$

Quick Check

Fit η -distributions for energy bins with Gaussian and extract means:

HUMBOLDT-UNIVERSITÄT

Quick Check

Fit $\langle \eta \rangle$ with $\sim \exp\left(-\alpha x^2\right)$

- > Fitted function gets 0 at $\langle\eta\rangle=5.23$
- \rightarrow Expected $\eta(\pi^0)$ for high energy limit?
- > Mean width of Gaussians ~ 0.7
- → (crude) estimate for expected COM η -interval for highest $E(\pi^0)$ at $\sqrt{(s)} = 43.3 \,\text{GeV}$: $4.43 < |\eta(\pi^0)| < 5.93$

Try LHC energies

HUMBOIDT.

711 BERIII

UNIVERSITÄT

- > Higher \sqrt{s} \rightarrow higher expected $|\eta(\pi^0)|$
- > Quick check: Mean and width from Gauss fit of last energy bin (with enough statistics): $9.7 < |\eta(\pi^0)| < 11.1$

Try different Generators (Still LHC Scenario)

QGSJET:

Try different Generators (Still LHC Scenario)

Observations:

- Different generators show differences in high energy bin population (seen already before in energy distributions)
- > However, not so much differences in expected $|\eta(\pi^0)|$ (judging by eye)
- > Seems to coincide nicely with LHCf η acceptance
- > Also compatibel with Marcel's estimation for $\sqrt{s} = 13.6 \text{ TeV}$ ($|\eta(\pi^0)| < 11.5$)

Conclusion

- > Marcel's η estimation corresponds to highest π^0 -energy bin in COM frame
- > Highest energy bins are dominated by certain η -range (instead of just going to higher and higher η -values)
- > Could develop strategy for extracting expected η -range for highest π^0 energies from fitting η -distributions for different energy bins and extrapolating to highest energies
- \rightarrow This was only a very crude attempt (try different fit functions, look at fit quality etc.)
- > η -range for highest energies is then defined by extrapolated Gaussian mean and width
- > Especially for the lower bound of the range this could deliver a better motivation than $\ln(0.1 \cdot \sqrt{s}/m(\pi^0))$

Something different...

New forward Pythia tune available!

New Pythia Forward Tune

- Developed by people from FASER and FPF (forward physics facility), presented in MPI@LHC
- > Based on LHCf results from run 1 and run 2!
- > Publication here

Full name	Shorthand	Baseline (Monash)	Forward Tune	Uncertainty
BeamRemnants:dampPopcorn	$d_{\rm pop}$	1	0	
BeamRemnants:hardRemnantBaryon	$f_{\rm remn}$	off	on	
BeamRemnants: aRemnantBaryon	$a_{\rm remn}$	-	0.68	
BeamRemnants:bRemnantBaryon	$b_{\rm remn}$	-	1.22	
BeamRemnants:primordialKTsoft	$\sigma_{\rm soft}$	0.9	0.56	$0.2 \dots 1.42$
BeamRemnants: primordialKThard	$\sigma_{ m hard}$	1.8	1.8	
BeamRemnants:halfScaleForKT	Q_{half}	1.5	10	
BeamRemnants:halfMassForKT	$m_{\rm half}$	1	1	
BeamRemnants:primordialKTremnant	$\sigma_{ m remn}$	0.4	0.56	$0.22 \dots 1.42$

Quick Check

 \rightarrow Strong impact on highly energetic π^0 distribution!

| At which pseudorapidities should we look if we want to see π^0 at maximal energy? | Clara Leitgeb | Humboldt University Berlin, 18.1.2023