
Jason J. Watson
Zeuthen Data Science Seminar
April 16, 2024

unittesting

unittestingJ. J. Watson

Contents

§What is unit testing? Why use it?

§ pytest

§ Advanced approaches and features

1

Credits to Maximilian Nöthe
https://indico.in2p3.fr/event/20306/contributions/96818/

https://indico.in2p3.fr/event/20306/contributions/96818/

unittestingJ. J. Watson

Who am I?
§ Postdoc in the Gamma group (since Jan 2020) – background in astrophysics
§ Software development with Python and C++
§ Strong advocate for unit testing
§ Current projects: writing slow control & image readout software for two cameras

2

unittestingJ. J. Watson

Testing Software

§ Anyone who writes software almost certainly tests their software
§ The simplest possible test: manually running your script
§ But this is error prone:

§ We can forget
§ Can often miss bugs (especially in edge cases)
§ Very tedious and time consuming

§ Better solution: automated testing

3

unittestingJ. J. Watson

Automated Testing

§ Automated tests are developed as part of the codebase, and can be (re-)executed at many stages of
the project development

§ Tests for software can be divided into three categories:
§ Unit test: Ensure that the smallest components of the codebase behave as expected
§ Integration test: Ensure that the interaction between components (internal and external)

behave as expected
§ Performance test: Ensure that the component meets requirements (e.g. speed)

§ The lines between these three can often be blurred – what you call your tests is less important than
writing them in the first place!

4

unittestingJ. J. Watson

Simple Unit Test Example

5

§ This very simple example demonstrates the key components to a unit test:
§ We have isolated our smallest testable component: the add method
§ We have defined our test inputs
§ We have passed the input into our unit
§ We have asserted the expected outputs

§ This form of unit-testing is known as “example-based testing”
§ We will later explore its twin: “property-based testing”

1 def add(x: float, y: float) -> float:
2 return x + y
3
4
5 assert add(1, 1) == 2
6 assert add(-1, 1) == 0
7 assert add(2, 6) == 8

unittestingJ. J. Watson

Quick Note on Type Hinting

§ In the simple example, I use type hinting
§ This is a feature of the Python standard library
§ It helps to document the expected types of variables, arguments and return values
§ Like unit tests, they are a good practice which catch bugs early (through IDE warnings)
§ Pair nicely with unit tests, as they further encourage you to define the inputs and outputs of a unit
§ But they are only hints, the types are not enforced at runtime… unless you use mypy

6

1 def add(x: float, y: float) -> float:
2 return x + y
3
4
5 assert add(1, 1) == 2
6 assert add(-1, 1) == 0
7 assert add(2, 6) == 8

https://mypy-lang.org/

unittestingJ. J. Watson

Why unit test?
§ Trust
§ Unit tests are a guarantee to your users that the product works
§ Unit tests are a reassurance to yourself that the product works

§ Design
§ Encourages good software practices, such as splitting our code into smaller, more-understandable parts
§ Forces us to more carefully consider a unit’s purpose, its inputs, outputs, and its error conditions

§ Maintainability
§ Aided by unit tests, we can “refactor with confidence”
§ We have a quick way to check compatibility with new language or dependency versions

§ Documentation
§ Tests can serve as additional documentation for your project, providing usage examples

Writing unit tests are a worthwhile investment.
They will save us more time than the time spent writing them.

7

unittestingJ. J. Watson

F.I.R.S.T Principles of Unit Testing

§ Fast: should be quick to run, so you aren’t discouraged from running them often
§ Independent: should not depend on the state of the previous test
§ Repeatable: avoid random input and conditions (use a seed) – can result in “flaky tests”
§ Self-validating: each test should have a single boolean output of “pass” or “fail”
§ Thorough: test for all use-cases (including error and edge conditions)

§ Don’t just aim for 100% line coverage

8

unittestingJ. J. Watson

Additional Ingredients of Good Unit Tests

§ Existence!
§ Simple: split testing of different unit features between different tests
§ Readable: the intention of the test needs to be clear, so it is helpful during future refactoring
§ Resilient: changing the unit implementation shouldn’t require major unit test changes
§ Distinct: the unit test should not repeat the unit implementation
§ Unique: each test should test a different aspect of the unit

9

pytest

unittestingJ. J. Watson

What is pytest?

§ The most popular test framework for Python
§ Test cases are automatically detected using patterns:

§ Modules matching either test_*.py or *_test.py
§ Functions named test*
§ Methods named test* of classes named Test*

§ assert used inside the test
§ Test fails if assertion is false or if an exception is raised
§ Performs introspection of the assertion to report on failure reason

11

Effective Python Testing With Pytest

https://realpython.com/pytest-python-testing/

unittestingJ. J. Watson

Our Example Unit

12

1 def fibonacci(n: int) -> int:
2 if n <= 1:
3 return n
4 return fibonacci(n-1) + fibonacci(n-2)

unittestingJ. J. Watson

First tests - FAIL

13

1 from fibonacci_v1 import fibonacci
2
3 def test_fibonacci():
4 assert fibonacci(0) == 1
5 assert fibonacci(1) == 1
6 assert fibonacci(4) == 3
7 assert fibonacci(5) == 5
8 assert fibonacci(11) == 89

unittestingJ. J. Watson

First tests - SUCCESS

14

1 from fibonacci_v1 import fibonacci
2
3 def test_fibonacci():
4 assert fibonacci(0) == 0
5 assert fibonacci(1) == 1
6 assert fibonacci(4) == 3
7 assert fibonacci(5) == 5
8 assert fibonacci(11) == 89

unittestingJ. J. Watson

Useful Arguments
§ Select individual tests

§ Run matching tests

§ Re-run test which failed on last run

§ Run tests until N failures

§ Enter interactive “pdb” debugger on test failure (or IPython debugger)

§ Show print or logging output during tests

15

pytest test_fibonacci.py::test_fibonacci

pytest -k "fib"

pytest --last-failed

pytest --maxfail=2

pytest --pdb --pdbcls=IPython.terminal.debugger:TerminalPdb

pytest -s --log-cli-level=DEBUG

unittestingJ. J. Watson

Testing Exceptions

16

1 def fibonacci(n: int) -> int:
2 if n < 0:
3 raise ValueError("Positive integer required as argument")
4 if n <= 1:
5 return n
6 return fibonacci(n-1) + fibonacci(n-2)
7
8 import pytest
9

10 def test_fibonacci_positive():
11 with pytest.raises(ValueError):
12 fibonacci(-1)

unittestingJ. J. Watson

Floating Point Approximations

17

1 import pytest
2
3 def test_float():
4 assert 0.1 + 0.2 != 0.3
5 assert 0.1 + 0.2 == pytest.approx(0.3)

https://0.30000000000000004.com/

https://0.30000000000000004.com/

unittestingJ. J. Watson

Fixtures
§ Re-use data or resources between tests
§ Define different scopes for fixtures: session, module, class or function (default)

18

1 import pytest
2
3 @pytest.fixture
4 def data() -> list[int]:
5 return [1, 2, 3]
6
7 def multiply_inplace(d: list[int], x: float):
8 for i in range(len(d)):
9 d[i] *= x

10
11 def test_x2(data: list[int]):
12 multiply_inplace(data, 2)
13 assert data == [2, 4, 6]
14
15 def test_x3(data: list[int]):
16 multiply_inplace(data, 3)
17 assert data == [3, 6, 9]

unittestingJ. J. Watson

Pytest-Provided Fixtures: capsys
§ https://docs.pytest.org/en/6.2.x/fixture.html

19

1 import pytest
2
3 def test_capsys(capsys: pytest.CaptureFixture):
4 print("this is a test")
5 captured = capsys.readouterr()
6 assert captured.out == "this is a test\n"

https://docs.pytest.org/en/6.2.x/fixture.html

unittestingJ. J. Watson

Pytest-Provided Fixtures: tmp_path
§ https://docs.pytest.org/en/6.2.x/fixture.html

20

1 import pytest
2 from pathlib import Path
3
4 @pytest.fixture
5 def abc_path(tmp_path: Path) -> Path:
6 path = tmp_path / "abc.txt"
7 with open(path, mode="w") as file:
8 file.write("abc")
9 return path

10
11 def test_abc(abc_path: Path):
12 with open(abc_path, mode="r") as file:
13 assert file.read() == "abc"

https://docs.pytest.org/en/6.2.x/fixture.html

unittestingJ. J. Watson

Fixture Clean-up
§ yield a fixture to perform additional clean-up of the fixture after the test is finished with it

21

1 class DatabaseConnection:
2 def __init__(self, address: str):
3 self._address = address
4 self._active = False
5 self._db = {"entry0": 0}
6
7 def open(self):
8 self._active = True
9
10 def close(self):
11 self._active = False
12
13 def get(self, key: str) -> int:
14 if not self._active:
15 raise ConnectionError()
16 return self._db[key]

18 import pytest
19
20 @pytest.fixture
21 def database() -> DatabaseConnection:
22 db = DatabaseConnection("127.0.0.1:12345")
23 db.open()
24 yield db
25 db.close()
26
27
28 def test_db(database: DatabaseConnection):
29 assert database.get("entry0") == 0

unittestingJ. J. Watson

Parameterized Test Input
§ We can reduce repetition in the original example test using pytest.mark.parametrize

22

1 from fibonacci_v1 import fibonacci
2 import pytest
3
4 @pytest.mark.parametrize("n, expected", [
5 (0, 0),
6 (1, 1),
7 (4, 3),
8 (5, 5),
9 (11, 89),

10])
11 def test_fibonacci(n: int, expected: int):
12 assert fibonacci(n) == expected

unittestingJ. J. Watson

Skipping Tests
§ Skip tests where the dependencies/requirements are not met

23

1 import pytest
2 import sys
3
4 def test_awesome_dependency():
5 awesome = pytest.importorskip("awesome")
6 assert awesome.is_awesome()
7
8 @pytest.mark.skipif(sys.platform != 'win32', reason="windows only")
9 def test_windows():

10 assert os.path.exists('C:\\')

unittestingJ. J. Watson

Expected Failures
§ Mark tests which are expected to fail with
§ E.g. features not yet implemented, known (but not yet fixed) bugs

24

1 import pytest
2
3 @pytest.mark.xfail
4 def test_xfail():
5 uninplemented_feature()

Advanced
Usage

unittestingJ. J. Watson

Example Database
§ Lets say we have a database which our application uses
§ We want to test our unit which retrieves the full name of a member from the database

26

1 class Avengers:
2 def get_member_name(self, member_id: int) -> str:
3 first_name = pass # Get from database
4 last_name = pass # Get from database
5 return first_name + " " + last_name
6
7 def test_avengers_get_member_name():
8 avengers = Avengers()
9 assert avengers.get_member_name(1) == "Peter Parker"

unittestingJ. J. Watson

Naïve Attempt: High Dependence
§ Our first attempt at an implementation & unit test might directly use the database
§ Problems:

§ Requires the database to be available
§ Strong coupling to the database technology (sqlite)

27

1 import sqlite3
2
3 class Avengers:
4 def __init__(self):
5 self.connection = sqlite3.connect("avengers.db")
6 self.cursor = self.connection.cursor()
7
8 def get_member_name(self, member_id: int) -> str:
9 cmd = f"SELECT * FROM members WHERE member_number = {member_id};"
10 self.cursor.execute(cmd)
11 result = self.cursor.fetchall()[0]
12 return result[1] + " " + result[2]
13
14 def test_avengers_get_member_name():
15 avengers = Avengers()
16 assert avengers.get_member_name(1) == "Peter Parker"

unittestingJ. J. Watson

Dependency Injection Pattern
§ Coupling can be reduced by isolating the database into its own class (“separation of concerns”)
§ This class is then “injected” as a dependency for our Avengers class
§ The database connection can now be reused in multiple places
§ Problems remain: needs database to be available and only compatible with sqlite

28

1 import sqlite3
2
3 class SQLDatabase:
4 def __init__(self):
5 self.connection = sqlite3.connect("avengers.db")
6 self.cursor = self.connection.cursor()
7
8 def get_field(self, member_id: int, field: int) -> str:
9 cmd = f"SELECT * FROM members WHERE member_number = {member_id};"
10 self.cursor.execute(cmd)
11 result = self.cursor.fetchall()[0][field]
12 return result
13
14 class Avengers:
15 def __init__(self, db: SQLDatabase):
16 self.db = db
17
18 def get_member_name(self, member_id: int) -> str:
19 first_name = self.db.get_field(member_id, 1)
20 last_name = self.db.get_field(member_id, 2)
21 return first_name + " " + last_name

23 import pytest
24
25 @pytest.fixture
26 def database() -> SQLDatabase:
27 return SQLDatabase()
28
29 def test_avengers_get_member_name(database: SQLDatabase):
30 avengers = Avengers(database)
31 assert avengers.get_member_name(1) == "Peter Parker"

unittestingJ. J. Watson

Dependency Inversion Principle
§ Instead of depending on the SQL-specific database class, we can depend on a generic interface

which implements the necessary methods: “Dependency inversion”
§ This can be communicated in Python with typing.Protocol
§ Both our previous SQLDatabase and the new MockDatabase implement the necessary interface

defined by GenericDatabase
§ We use MockDatabase to test our unit with better isolation from other units (i.e. the database)

29

1 from typing import Protocol
2
3 class GenericDatabase(Protocol):
4 def get_field(self, member_id: int, field: int) -> str:
5 ...
6
7 class Avengers:
8 def __init__(self, db: GenericDatabase):
9 self.db = db
9
10 def get_member_name(self, member_id: int) -> str:
11 first_name = self.db.get_field(member_id, 1)
12 last_name = self.db.get_field(member_id, 2)
13 return first_name + " " + last_name

18 class MockDatabase:
19 def __init__(self):
20 self._data = {1: ("1", "Peter", "Parker", "M", "1982-05-12")}
21
22 def get_field(self, member_id: int, field: int) -> str:
23 return self._data[member_id][field]
24
25 @pytest.fixture
26 def database() -> GenericDatabase:
27 return MockDatabase()
28
29 def test_avengers_get_member_name(database: GenericDatabase):
30 avengers = Avengers(database)
31 assert avengers.get_member_name(1) == "Peter Parker"

unittestingJ. J. Watson

Seamless Integration Testing
§ Leveraging advanced features of pytest, we can re-use the same test in the integration testing for

situations where the SQL database is available

30

conftest.py
1 def pytest_addoption(parser):
2 parser.addoption("--sql", action="store_true", help="Run tests against SQL database.")

37 def pytest_generate_tests(metafunc):
38 if "dut_type" in metafunc.fixturenames:
39 values = ["SQL", "MOCK"]
40 metafunc.parametrize("dut_type", values)
41
42 @pytest.fixture
43 def sql_available(pytestconfig) -> bool:
44 return pytestconfig.getoption("sql", False)
45
46 @pytest.fixture
47 def database(sql_available: bool, dut_type: str) -> GenericDatabase:
48 if dut_type == "SQL":
49 if not sql_available:
50 pytest.skip("SQL not available")
51 return SQLDatabase()
52 else:
53 return MockDatabase()

unittestingJ. J. Watson

Seamless Integration Testing
§ Both tests cases are ran
§ If the --sql argument is not used, the test case requiring the database is skipped

31

unittestingJ. J. Watson

Other Topics…
§ conftest.py
§ Mocking with unittest.patch
§ Other Python unit testing frameworks (unittest, hypothesis)
§ Unit testing in other languages

§ Yes, compiled languages (C++) also need unit tests
§ Yes, firmware (e.g. VHDL) also need unit tests

§ Doctest-ing
§ Test Driven Development

32

unittestingJ. J. Watson

Summary
§ Unit testing brings reassurance to your code

§ It is worth the investment to write unit tests
§ time spent writing them now will save time debugging your code in the future

§ Perfect is the enemy of good – better to write mediocre unit tests than have none at all

§ Don’t write unit tests for others, write them for yourself (or future you)!
§ useful also as documentation and can remind you how the unit is used

§ Pytest is a very rich test framework (the richest I’ve seen so far)
§ but is also very simple to get started with

33

