

Update from A1

Tim Herrmann, Timo Janßen, Frank Siegert ErUM-Data KISS Annual Meeting February 2024

Digital twins: LHC collision events

Is event generation expensive?

.

3

CPU budget

High-multiplicity matrix elements

• Expensive CPUh: hard scattering MEs

n

$$\hat{\sigma}_N = \int_{\text{cuts}} d\hat{\sigma}_N = \int_{\text{cuts}} \left[\prod_{i=1}^N \frac{d^3 q_i}{(2\pi)^3 2E_i} \right] \delta^4 \left(p_1 + p_2 - \sum_i^N q_i \right) \, |\mathcal{M}(p_1, p_2, q_1, \dots, q_N)|^2$$

 \rightarrow Monte Carlo unweighting in 2 stages: surrogate, real ME

- Proof of principle:
 - MA theses (Johannes Krause, TU Dresden 2015 & Katharina Danziger, TU Dresden 2020)
 - Danziger, Janßen, Schumann, Siegert [2109.11964]
- First generalisation and more advanced NN:
 - Janßen, Maitre, Schumann, Siegert, Truong [2301.13562]
- Early milestones for KISS:

Arbeitspaket	Meilenstein		Beteiligte AGs	Mona	Monate				
				1-6	7-12	13-18 19	24 25-30	0 31-36	
Teilprojekt A:									
A1: Erzeugung von	M1	M1 Schnittstelle Sherpa/Surrogate TUD/UGOE \rightarrow 1 m							
Teilchenereignissen	M2	Benchmarking	TUD/UGOE		\rightarrow Timo				
	M3	Dynamisches Training	UHD/TUD						
	M4	NLO-Genauigkeit	UGOE/TUD					\rightarrow Timo	
	M5	Optimierung zu Multi-Leg	TUD/UHD/UGOE					\rightarrow Tin	
	M6	Invertierung	UHD/UGOE						

Tim (TU Dresden)

Interface available for external surrogate providers \rightarrow available in both Sherpa2 and Sherpa3

Output from Sherpa for training:

 momenta of initial and final state ME partons and ME (+PhS) weight

Training outside of Sherpa (your NN could go here):

Train Onnx model

Input to Sherpa:

 Onnx model which calculates ME weight surrogate from momenta

Integration	~5M events: momenta and ME weight		
	Train		
	Onnx NN model		
Event genera	tion		
1. Pick PS point momenta			
1. Pick PS po	int momenta		
1. Pick PS po 2. Keep event	t \mathbf{M}		

Original prototype: fixed hyperparameters Problem: different scattering processes \rightarrow very different optimal hyperparameters? \rightarrow need flexible and automatic optimisation

Solution: OPTIMA

- Hyperparameter optimization using:
 - Bayesian optimisation and/or
 - Population based training (PBT)
- (Input variable selection \rightarrow to be explored)
- Technicalities: Wrapper around
 - Tune (e.g. Keras/Lightning) and
 - Ray (Parallelisation)
- Erik Bachmann: <u>thesis</u> and <u>gitlab</u>

 Table 1: Hyperparameters of the neural network and their values.

Parameter	Value					
Hidden layers	4					
Nodes in hidden layers	128					
Activation function	swish [25, 26]					
Weight initialiser	Glorot uniform [27]					
Loss function	MSE					
Batch size	512					
Optimiser	Adam [28]					
Initial learning rate	10^{-3}					
Callbacks	EarlyStopping, ReduceLROnPlateau					

Timo (Uni Göttingen)

Validation

- for validation we compare against established tools
- use 1D histograms of physical observables
- analyse distribution of bin-wise deviations
- multivariate nonparametric tests could also be interesting (e.g. MMD, energy distance, Wasserstein distance, ...)

Effective gain factor

How much do we gain overall?

Going to Next-to-leading order

- at NLO negative weights appear
- our algorithm is easily adapted to deal with this (incl. sign errors)
- need a fast&accurate surrogate for loop amplitudes

Examples:

- Bayesian networks with boosted training, $gg \rightarrow \gamma \gamma g(g)$ [Badger *et al.* SciPost Phys. Core 6, 034 (2023)]
- factorisation-aware model based on antenna functions, $e^+e^- \rightarrow q\bar{q} + [1..3]g$ [Maître&Truong JHEP **2023**, 159]

Colour sampling

- so far we considered colour-summed matrix elements
- at some number of final-state particles, sampling the colours becomes more efficient (better scaling)
- requires fast&accurate surrogate for partial amplitudes
- challenges:
 - additional colour dimensions increase complexity
 - partial amplitudes are much faster (single term instead of large sum)
- maybe we can build a model that "knows" about the SU(3) colour structure

Image: Arpad Horvad (2006), Wikimedia Commons, CC BY-SA 2.5