
The Smart Background Project
Selective Background Monte Carlo Simulation at Belle II

Boyang Yu, Nikolai Hartmann, Thomas Kuhr

KISS Annual Meeting Hamburg, February 13, 2024

1 / 11



Selective/Smart background MC simulation

Introduced by James Kahn in his PhD thesis:

Generate
Keep

Discard

SkimReconstruct AnalyseSimulate
Keep

Discard

NN

• Event generation takes much less computing time than detector simulation (at Belle II)

• Many events discarded (e.g. by skim)
→ try to predict which events will be discarded, already after event generation

• Not always a clearly correlated variable on generator level
→ example: skim may use involved algorithms like FEI (Full Event Interpretation)
→ train an NN to be a good filter

2 / 11



Graph structured data ↔ Graph neural networks

Upsilon(4S)

B0 anti-B0

D*- pi+ pi+ pi- pi0 D*+ D_s-

anti-D0 pi- gamma gamma D+ pi0 rho- eta

K+ pi- K_S0 pi+ pi0 gamma gamma pi- pi0 gamma gamma gamma

pi+ pi- gamma gamma gamma gamma

Node attributes: PDG ID, 4-vector components, Vertex positions, Decay times
→ usage of graph neural networks proved very useful

3 / 11



The dataset

• Y (4S) → B0B̄0 samples

• label: pass/fail FEI Hadronic B0 skim
→ select events where at least one Hadronic B0 reconstructed with FEI

• 900k training, 100k validation, 500k testing

• Note: Part of this dataset publicly available and featured in common paper
”Shared Data and Algorithms for Deep Learning in Fundamental Physics”
→ arXiv:2107.00656
→ graph network model for this dataset also works well on other datasets!
→ https://github.com/erum-data-idt/pd4ml

→ also using this dataset for our AI Lab course at LMU

4 / 11

https://arxiv.org/abs/2107.00656
https://github.com/erum-data-idt/pd4ml


CNN vs GCN

CNN GCN

Main limitation of plain GCN: equal contribution from each neighbor in sum

5 / 11



Attention mechanisms

• Graph attention networks (GAT): infer weights for neighbor aggregation from features of
adjacent nodes

• Global attention pooling: infer weights for aggregation into global features from node
features

6 / 11



7 / 11



Complete architecture

• after each step update node + global features

• final linear transformation of global features into 1D output

• implemented using pytorch + dgl

8 / 11

https://www.dgl.ai


The problem with naive filtering

Generate
Keep

Discard

SkimReconstruct AnalyseSimulate
Keep

Discard

NN

• false positives are not too problematic
(we throw them away later by running the “true” skim)

• false negatives may produce bias (we can’t get them back)

9 / 11



The solution: Importance sampling

• Use NN output as probability to keep event

• Weight events by inverse probability

• No bias by construction

• Train NN to provide highest speedup tnoNN

tNN

to produce same effective sample size
(
∑

i wi)
2∑

i w
2
i

after skimming

• Very similar to slicing strategy for MC filters at LHC (ATLAS, CMS(?))
→ slicing is essentially importance sampling with discrete probabilities
→ could our method be applied there, too?

• Speedup of ≈ 2 achievable with benchmark dataset

10 / 11



Summary and Outlook

• Graph NN with attention works well to filter events early in simulation chain

• Importance sampling to avoid bias from false negatives
→ train to maximize speedup, considering effective sample size (weights)

• Importance sampling can achieve speedup factor of ≈ 2 on benchmark
→ could generate twice the effective samples size using same computing time
(statistical uncertainty reduced by a factor of ≈

√
2)

• Initial studies suggest higher speedups for selections with lower filter efficiency
→ but also less training data available
→ investigate training on-the-fly (train while generating new MC)

• Benchmark Model and inference implemented in Belle II software

• Implementation of general training procedure ongoing

11 / 11



Backup

12 / 11



Avoid or correct bias using event weights
Sampling method Reweighting method

Use NN output as probability to keep event Use NN output as score to cut on

Weight events by inverse probability
→ like importance sampling
→ w = 1

pNNfilter

Reweight events to correct bias
→Gradient Boosting Decision Trees
→ w = 1

pGBDT

No bias by construction No bias for quantities included in reweighting
(if reweighting performs well)
→ needs validation

Use speedup as loss function in training Use binary cross entropy in training

Metric to optimize: Speedup
“How much faster can i produce the same number of events (in terms of effective sample size)
using the same computation time?”

Effective sample size:
(
∑

i wi)
2∑

i w
2
i

→ Maximum achieved for Sampling Method: ≈ 2, for Reweighting method ≈ 5− 6

13 / 11



GBDT reweighting

Original Reweighted

(8 variables above black line used to derive weights)
14 / 11



More quantitative: p-values from KS-Test

Marked values used to fit the GBDT (derive weights)

→ still some deviations left for quantities not used in GBDT training

15 / 11


