The Smart Background Project Selective Background Monte Carlo Simulation at Belle II

Boyang Yu, Nikolai Hartmann, Thomas Kuhr

KISS Annual Meeting Hamburg, February 13, 2024

Selective/Smart background MC simulation

Introduced by James Kahn in his PhD thesis:

- Event generation takes much less computing time than detector simulation (at Belle II)
- Many events discarded (e.g. by skim) \rightarrow try to predict which events will be discarded, already after event generation
- Not always a clearly correlated variable on generator level
 - ightarrow example: skim may use involved algorithms like FEI (Full Event Interpretation)
 - \rightarrow train an NN to be a good filter

Graph structured data \leftrightarrow Graph neural networks

Node attributes: PDG ID, 4-vector components, Vertex positions, Decay times \rightarrow usage of graph neural networks proved very useful

The dataset

- $Y(4S) \rightarrow B^0 \bar{B}^0$ samples
- label: pass/fail FEI Hadronic B^0 skim \rightarrow select events where at least one Hadronic B^0 reconstructed with FEI
- 900k training, 100k validation, 500k testing
- Note: Part of this dataset publicly available and featured in common paper "Shared Data and Algorithms for Deep Learning in Fundamental Physics"
 - \rightarrow arXiv:2107.00656
 - ightarrow graph network model for this dataset also works well on other datasets!
 - \rightarrow https://github.com/erum-data-idt/pd4ml
 - \rightarrow also using this dataset for our AI Lab course at LMU

CNN vs GCN

Main limitation of plain GCN: equal contribution from each neighbor in sum

Attention mechanisms

- Graph attention networks (GAT): infer weights for neighbor aggregation from features of adjacent nodes
- Global attention pooling: infer weights for aggregation into global features from node features

Complete architecture

- after each step update node + global features
- final linear transformation of global features into 1D output
- implemented using pytorch + dgl

The problem with naive filtering

- false positives are not too problematic (we throw them away later by running the "true" skim)
- false negatives may produce bias (we can't get them back)

The solution: Importance sampling

- Use NN output as probability to keep event
- Weight events by inverse probability
- No bias by construction
- Train NN to provide highest speedup $\frac{t_{noNN}}{t_{NN}}$ to produce same effective sample size $\frac{(\sum_i w_i)^2}{\sum_i w_i^2}$ after skimming
- Very similar to slicing strategy for MC filters at LHC (ATLAS, CMS(?))
 → slicing is essentially importance sampling with discrete probabilities
 → could our method be applied there, too?
- Speedup of ≈ 2 achievable with benchmark dataset

Summary and Outlook

- Graph NN with attention works well to filter events early in simulation chain
- Importance sampling to avoid bias from false negatives
 → train to maximize speedup, considering effective sample size (weights)
- Importance sampling can achieve speedup factor of ≈ 2 on benchmark
 → could generate twice the effective samples size using same computing time (statistical uncertainty reduced by a factor of ≈ √2)
- Initial studies suggest higher speedups for selections with lower filter efficiency \rightarrow but also less training data available
 - \rightarrow investigate training on-the-fly (train while generating new MC)
- Benchmark Model and inference implemented in Belle II software
- Implementation of general training procedure ongoing

Backup

Avoid or correct bias using event weights

Sampling method	Reweighting method
Use NN output as probability to keep event	Use NN output as score to cut on
Weight events by inverse probability	Reweight events to correct bias
ightarrow like importance sampling	ightarrowGradient Boosting Decision Trees
$\rightarrow w = rac{1}{p_{ m NN filter}}$	$\rightarrow w = \frac{1}{p_{\text{GBDT}}}$
No bias by construction	No bias for quantities included in reweighting
	(if reweighting performs well)
	ightarrow needs validation
Use speedup as loss function in training	Use binary cross entropy in training

Metric to optimize: Speedup

"How much faster can i produce the same number of events (in terms of *effective sample size*) using the same computation time?"

Effective sample size: $\frac{(\sum_i w_i)^2}{\sum_i w_i^2}$ \rightarrow Maximum achieved for Sampling Method: ≈ 2 , for Reweighting method $\approx 5-6$

GBDT reweighting

(8 variables above black line used to derive weights)

More quantitative: p-values from KS-Test

Marked values used to fit the GBDT (derive weights)

 \rightarrow still some deviations left for quantities not used in GBDT training