The Smart Background Project

Selective Background Monte Carlo Simulation at Belle 11

Boyang Yu, Nikolai Hartmann, Thomas Kuhr

KISS Annual Meeting Hamburg, February 13, 2024

LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Belle II

1/11

Selective/Smart background MC simulation

Introduced by James Kahn in his PhD thesis:

Keep | = . Keep
Generate NN Simulate Reconstruct Skim » Analyse
Alfiscard Alfiscard

® Event generation takes much less computing time than detector simulation (at Belle II)

® Many events discarded (e.g. by skim)
— try to predict which events will be discarded, already after event generation

® Not always a clearly correlated variable on generator level
— example: skim may use involved algorithms like FEI (Full Event Interpretation)
— train an NN to be a good filter

2/11

Graph structured data <> Graph neural networks

(w0)

Node attributes: PDG ID, 4-vector components, Vertex positions, Decay times
— usage of graph neural networks proved very useful

3/11

The dataset

Y (4S) — BYB° samples

label: pass/fail FEI Hadronic B skim

— select events where at least one Hadronic B reconstructed with FEI
900k training, 100k validation, 500k testing

Note: Part of this dataset publicly available and featured in common paper
"Shared Data and Algorithms for Deep Learning in Fundamental Physics”
— arXiv:2107.00656

— graph network model for this dataset also works well on other datasets!
— https://github.com/erum-data-idt/pd4ml

— also using this dataset for our Al Lab course at LMU

4/11

https://arxiv.org/abs/2107.00656
https://github.com/erum-data-idt/pd4ml

CNN vs GCN

CNN

Single CNN layer h
with 3x3 filter: 0

e 288
¢ oo

h51+1) =(7(W“ h +W! 11‘11‘ +"'+W}<,)h§<’)>

GCN

Consider this
undirected graph:

Calculate update
for node in red:

O 7 OO ooo>8<§

O O
Update W
rule: hng) (i u + Z Cii - ,]>
]

Main limitation of plain GCN: equal contribution from each neighbor in sum

5/11

Attention mechanisms

® Graph attention networks (GAT): infer weights for neighbor aggregation from features of
adjacent nodes

® Global attention pooling: infer weights for aggregation into global features from node
features

6/11

Complete architecture

**Node ! **+Global
Features Features

*Global
Features

*Node 4

Features Module :
Node 'A GAT- 5

FeaturesW Module :

Graph

Global
Features

With graph structure No more graph structure

® after each step update node + global features
e final linear transformation of global features into 1D output

® implemented using pytorch + dgl

8/11

https://www.dgl.ai

The problem with naive filtering

Kee| Kee
NN R Simulate Reconstruct Skim p; Analyse

AiEiscard AlEiscard

False
negatives

False
positives

¢ false positives are not too problematic
(we throw them away later by running the “true” skim)

® false negatives may produce bias (we can't get them back)

9/11

The solution: Importance sampling

Use NN output as probability to keep event
Weight events by inverse probability
No bias by construction

Train NN to provide highest speedup t?;ile

N2
to produce same effective sample size (é 1;2) after skimming

Very similar to slicing strategy for MC filters at LHC (ATLAS, CMS(?))
— slicing is essentially importance sampling with discrete probabilities
— could our method be applied there, too?

Speedup of = 2 achievable with benchmark dataset

10/11

Summary and Outlook

Graph NN with attention works well to filter events early in simulation chain

Importance sampling to avoid bias from false negatives
— train to maximize speedup, considering effective sample size (weights)

Importance sampling can achieve speedup factor of ~ 2 on benchmark
— could generate twice the effective samples size using same computing time
(statistical uncertainty reduced by a factor of ~ v/2)

Initial studies suggest higher speedups for selections with lower filter efficiency
— but also less training data available
— investigate training on-the-fly (train while generating new MC)

Benchmark Model and inference implemented in Belle Il software

Implementation of general training procedure ongoing

/1

Backup

Avoid or correct bias using event weights

Sampling method ‘ Reweighting method
Use NN output as probability to keep event Use NN output as score to cut on
Weight events by inverse probability Reweight events to correct bias
— like importance sampling —Gradient Boosting Decision Trees
—w=—t - w= —1
PNNfilter PGBDT
No bias by construction No bias for quantities included in reweighting

(if reweighting performs well)
— needs validation

Use speedup as loss function in training Use binary cross entropy in training

Metric to optimize: Speedup
“How much faster can i produce the same number of events (in terms of effective sample size)
using the same computation time?”

O wi)?

w?

Effective sample size: —
— Maximum achieved for Sampling Method: = 2, for Reweighting method ~ 5 — 6

13/11

GBDT reweighting
Original Reweighted

(8 variables above black line used to derive weights)
14/11

More quantitative: p-values from KS-Test

Marked values used to fit the GBDT (derive weights)

[, spHericity
[, aplanarity
I issingMass20fEvent
I ba c kwardHemisphereMomentum
I fox WolframR4
I M CParticles
IlioxWolframR2
Bthrust
IMbc
totalPhotonsEnergyOfEvent
MisibleEnergyOfEventCMS
[WissingEnergyOfEventCMS
BtaE
ks

T T

0 2 4 6 8
zZ-scores

— still some deviations left for quantities not used in GBDT training

15/11

