Towards Reducing the CPU Time for Air-Shower Simulations at IceCube

Navid K. Rad, Jakob van Santen

First Annual KISS meeting Feb 13. 2024, Hamburg

IceCube Neutrino Observatory

- Cubic-kilometer Neutrino detector
- **5160** Digital Optical Modules (DOM) in the glacial Antarctic ice (depths of 1450-2450m)
- Each DOM: a 25 cm PMT, high voltage power supply and digi & com. electronics

Background for high energy astrophysics neutrinos

- Atmospheric Muons and neutrinos:
 - Produced from the interaction of cosmic rays with the atmosphere
 - Even @ 1.5 km below ice, detected at high rates!
 - atmospheric muons: ~1000/s ~ O(10³) Hz
 - atmospheric neutrinos: ~ 1/5min ~ O(10⁻³) Hz
 - astrophysical neutrinos ~ 1/month ~O(10⁻⁶) Hz
 - Need to reduce background by factors 10^3 - 10^9

• The challenge is the rare background events:

- Muon + few or no other low energy muons
- a lone atmospheric neutrino

⇒ Very large simulations are needed!

IceCube simulation chain:

- account for the stochastic energy losses
- Photon propagation:
 - ice properties depend on depth \Rightarrow photons need to be tracked 0 individually...
 - The most computationally intensive part of simulation 0 (but parallelizable)

 \Rightarrow Only 2% of simulated events pass the Trigger & Filter

propagation (GPU)

Taking a shortcut?

Use Machine Learning to try to predict probability that a certain air shower will pass the Trigger/Filter

First attempts:

• Using available information of the **primary particle only**:

- energy
- particle type (H, He, Fe...)
- directional information
- interaction height

Train and hyper tune a NN on the available simulations (balanced sample)

⇒ Even after hyper tuning, difficult to gain significant discrimination

Use Machine Learning to try to predict probability that a certain air shower will pass the Trigger/Filter

Muons come to the rescue?

- Use muon/muon bundle information as well:
 - muon multiplicity,
 - muon bundle energy, fraction etc
 - distance of muons from the "shower"
- Train and hyper tune a NN on the available simulations (balanced sample)

⇒ Muon information significantly improves performance

Potential gain in CPU time

• Assumptions:

- air shower generation time << simulation time
- evaluation time of the model << simulation time
- CPU time goes as N_{accepted}
- Method:
 - 1. Interpret the predicted score (**p**_i) as "acceptance probability" of the event
 - 2. Assign corresponding weight to each event as $w_i = 1/p_i$
 - 3. Choose (scan) the minimum acceptance probability threshold
- Simple "speed up" Metric: $N_{
 m eff}^{
 m positive}/N_{
 m accepted}$
 - $N_{accepted}$: number of accepted events (based on their p_i)
 - N_{eff} : effective sample size of the accepted positive events $N_{eff} = \frac{(\sum_i w_i)^2}{\sum_i w_i^2}$ (size of an unweighted sample that would the same relative uncertainty)

Potential gain in CPU time

- Construct
 - \circ Ideal: "prediction" based on truth information \rightarrow Best case
 - \circ Uniform: "prediction" based on uniform distribution \rightarrow Worst case

⇒ Improvement of about 1.5x compare to default scenario

Summary and Outlook

- First attempts show some improvement in CPU time:
 - Proof of concept that acceleration is possible!

• Still room to improve the model

- Larger samples still available for training:
 - deepen the network and train longer
 - explore different architecture
- Feature engineering
- Go to the next level of selection (L3)

• Dedicated Loss:

incorporate the speed up improvement in the loss function

• Active learning

• Use the model to "suggest" air showers and use the simulation as the teacher

Potential gain in CPU time (slightly more realistic)

- Modify Assumptions:
 - CPU time goes as $N_{accepted}$ goes as $N(\gamma)$ Ο
- Slight more realistic "speed up" Metric:

$$N_{
m positive}(\gamma)/N_{
m accepted}(\gamma)$$

- 0
- $N_{accepted}(\gamma)$: total number of photons in the accepted events $N_{positive}(\gamma)$: total number of photons in the accepted positive events 0

Primary Distributions

Primary Correlations

Negatives

Positives

Correlation Matrix 0.30 0.34 -0.290.40 -0.34log rho - 0.34 0.07 log z - -0.29 -0.05 -0.03 0.07 -0.05 -0.03 -0.07 -0.07

Difference

Model: "Primary Hypertuned"

Layer		Size		Activation		Param #
batch normalization	:==	===== 8	====		===	32
Dense 0	İ	224	İ	leaky relu	İ	2016
dropout		224	1			0
Dense 1		224		leaky relu		50400
Dense 2		224		leaky relu		50400
Dense 3		112		leaky relu		25200
Dense 4		112		leaky relu		12656
Dense_5		112		leaky_relu		12656
Dense 6		56		leaky_relu		6328
Dense 7		56		leaky_relu		3192
Dense 8		56		leaky_relu		3192
Dense 9		28		leaky_relu		1596
Dense 10		28		leaky_relu		812
Dense 11		28		leaky relu		812
Dense 12		14		leaky relu		406
Dense_13		14		leaky_relu		210
Dense 14		14		leaky_relu		210
Dense_15		8				120
dense		1		—		9
	==					

Total params: 170,247

Trainable params: 170,231

Non-trainable params: 16

IceCube simulation challenges:

- The challenge:
 - Majority of the simulated showers are not triggered and do not pass the initial filtering (~2%)
 - Lots of CPU+GPU time is wasted on showers that are thrown away, way before getting to the analysis level.

• Many attempted solutions:

- Bias the generated distributions:
 - e.g. on average proton primaries end up with lower muon multiplicity
- Parametrize the muon bundle properties
- Hard energy cut: kill the shower if no particles about the energy threshold remain
- Soft energy cut: rejection probability based on the expected number of muons above certain energy

⇒ Only work in specific cases, and only to some degree... need a more general solution!