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Quality Control for Monte Carlo Samplers
● Several sampling solutions exist to solve numerical problems

● Samplers often developed and tested for specific problems 

→  Challenge to find the correct sampler for different use cases

● Goal: Universal framework for quality tests  of Monte Carlo 

samplers

○ Collect test functions/problems 

○ Collect metrics and samplers

○ Establish a database for comparison/validation of 

sampling quality

● How do we compare samples ?

● General idea: build test statistics for each metric and problem 

using IID/truth

○ Compare to metrics (or their distribution) of sampled 

distributions

Which sampler is “wrong”?

a)

b)

c)
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Design Concepts of Test Suite

● Main focus on easy expandability for samplers, test functions and test metrics

● IID sampling for comparisons of test metrics 

test cases

●functional form
●dimensionality
●param bounds

→ IID sampleable

samplers

● compatibility with 
test cases

● additional infos, 
ESS, autocorr

test metrics

●information on 
calculating metric 
with samples
●additional infos 
(two-sample test? 
name? dims?)

sampler test 
statistic

iid test 
statistic

comparison for 
quality
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Simple Example, 3D Unit Normal 
● Defining Test case (using the Distributions.jl package):

● Building test statistic for metrics with IID and BAT MH sampler

● Example: Mean of marginal distribution 

○ Normalize in terms of IID test statistic
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Simple Example: 3D Unit Normal

● about 100k points per metric for iid, and about 350 points per metric (right side)

● Overview of all metrics for one sampler at a time:

● Test case/samplers:

○ Collect more (complex) test functions

○ Run tests with different samplers

● Test Metrics:

○ So far: 1D marginal metrics

○ Use two sample tests like chi squared

○ Multidimensional point cloud comparisons?

With Wasserstein distance? 

●

Next Steps:
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Introduction to Wasserstein Distance

The Wasserstein distance, also known as Earth Mover’s Distance (EMD), is a measure of
the distance between two probability distributions over a metric space.

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
Rd×Rd

∥x− y∥pdγ(x, y)
) 1

p

where:

• µ and ν are the probability measures.
• Γ(µ, ν) is the set of all joint distributions γ with marginals µ and ν .
• ∥x− y∥ is the distance between points in support of µ and ν .
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What is Sliced Wasserstein Distance?

• Sliced Wasserstein Distance (SWD) provides a way to calculate the distance between
high-dimensional probability distributions.

• It simplifies the calculation by projecting high-dimensional distributions onto
multiple one-dimensional spaces.

• Particularly useful in applications like computer vision and machine learning.
• SWD is defined as the average Wasserstein distance between the one-dimensional
projections of the distributions.
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Introduction

Algorithm 1: Computational algorithm of the SW distance
Input: Probability measures µ and ν , p ≥ 1, and the number of projections L.
for l = 1 to L do

Sample θl ∼ U(Sd−1)
Compute vl = Wp(θl#µ, θl#ν)

Compute SWp(µ, ν; L) =
(
1
L
∑L

l=1 v
p
l

) 1
p

Output: SWp(µ, ν; L)
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Wasserstein distance of different distributions
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Sampling density and WS distance

(a) (b)

(c) (d)
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Sampling density and WS distance
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