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Quality Control for Monte Carlo Samplers

Which sampler is “wrong”?

Several sampling solutions exist to solve numerical problems
Samplers often developed and tested for specific problems
— Challenge to find the correct sampler for different use cases

a) -
e Goal: Universal framework for quality tests of Monte Carlo
samplers
o Collect test functions/problems
o Collect metrics and samplers

o Establish a database for comparison/validation of b)
sampling quality

p(x)

e How dowe compare samples ?
e General idea: build test statistics for each metric and problem
using lID/truth

o Compare to metrics (or their distribution) of sampled C)
distributions

p(x)

MCBench - Monte Carlo Benchmark Suite



Design Concepts of Test Suite
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e Main focus on easy expandability for samplers, test functions and test metrics
e |ID sampling for comparisons of test metrics

MCBench - Monte Carlo Benchmark Suite



Simple Example, 3D Unit Normal

e Defining Test case (using the Distributions.jl package):

f = MvNormal([©.0,0.0,0.0],I(3))
bounds = NamedTupleDist(x = fill(-10..10,3))
normaltestcase = testcases(f,bounds,3,"3DNormal")

v 07s

Julia

testcases{DiagNormal, NamedTupleDist{(:x,), Tuple{Product{Continuous, Uniform{Float64}, Vector{Uniform{F1
dim: 3

u: [e.e, 6.0, 0.0]
3: [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]

e Building test statistic for metrics with 11D and BAT MH sampler

build_teststatistic(normaltestcase,marginal_mean())
build_teststatistic(normaltestcase,marginal_mean(),BATMH())
plot_metrics(normaltestcase,[marginal_mean()],BATMH())

e Example: Mean of marginal distribution

o Normalize in terms of IID test statistic

3DNormal
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Simple Example: 3D Unit Normal

e Overview of all metrics for one sampler at a time:

Next Steps:

e Test case/samplers:
o Collect more (complex) test functions
o Runtests with different samplers
e Test Metrics:
o Sofar: 1D marginal metrics
o Usetwo sample tests like chi squared
o  Multidimensional point cloud comparisons?

——————> W.ith Wasserstein distance?

MCBench - Monte Carlo Benchmark Suite
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Introduction to Wasserstein Distance

The Wasserstein distance, also known as Earth Mover’s Distance (EMD), is @ measure of
the distance between two probability distributions over a metric space.

%
W) = (_inf [ x=ylPd(ey)
YEM(p,v) JRd xRd

where:

- and v are the probability measures.
- T'(u,v) is the set of all joint distributions v with marginals x and v.

- |[x —y|| is the distance between points in support of x and v.
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What is Sliced Wasserstein Distance?

- Sliced Wasserstein Distance (SWD) provides a way to calculate the distance between
high-dimensional probability distributions.

- It simplifies the calculation by projecting high-dimensional distributions onto
multiple one-dimensional spaces.

- Particularly useful in applications like computer vision and machine learning.

- SWD is defined as the average Wasserstein distance between the one-dimensional
projections of the distributions.
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Introduction

Algorithm 1: Computational algorithm of the SW distance
Input: Probability measures u and v, p > 1, and the number of projections L.
for(=1to L do
Sample 6; ~ U(S9")
L Compute v; = Wp(8i#p, 0/#v)

1
Compute SW,(u,v; L) = (% S vf’) ’
Output: SWy(p,v; L)

3/6



Wasserstein distance of different distributions

WS Distance ClI of Values by Distribution
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Sampling density and WS distance

Empirical Density of n = 10 WSD = 5.103 Empirical Density of n = 50 WSD = 1.399
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Sampling density and WS distance

Wasserstein Distance vs. Number of Samples
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