Controlled Precision Generators

Tilman Plehn

Universitat Heidelberg

Bitzmich Workshop, Hamburg, February 2024




LHC theory predictions

First-principle simulations

- start with Lagrangian
generate Feynman diagrams

- compute hard scattering amplitudes
for on-shell, include decays
add QCD jet radiation psriFsR]

- add parton shower [stit acpj
push fragmentation towards QCD

- all theory, except for detectors
— Simulations, not modeling!
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Pythia/Madgraph/Sherpa... for HL-LHC

- factor 25 more expected (= simulated) data
ATLAS Preliminary

- more CompleX final states 2020 Computing Model -c:tjﬁ: 2030: Aggressive R&D
2% 1
higher-orders precision o

- parameter coverage for signals

- enable analysis reinterpretation?
enable global LHC analyses?

— Theory nightmare

12%

== Data Proc
79 == MC-Full(Sim)
MC-Full(Rec)

- MC-Fast(Sim)
m MC-Fast(Rec)
= EvGen

6% Heavy lons

== Data Deriv

= MC Deriv
Analysis




Generative-network revolution

Generative networks

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently



Generative-network revolution

Generative networks

- encode density in target space
sample from Gaussian into target space

- reproduce training data, statistically independently

- Variational Autoencoder
— low-dimensional physics, high-dimensional representation

- Generative Adversarial Network
— generator playing against discriminator

- Normalizing Flow/INN
— stable (bijective) mapping

- Diffusion Model
— discrete (okay) or continuous (great)

- Generative Transformer
— learning correlations successively

— Bayesian NN uncertainty on estimated density

forward

Y

scattering decay QCD shower i detectors




2012 B-INN as starting point

LHC event generation

- n-particle phase space n x 4 d.o.f. f(raining on events]
- conceptual playgound for

MadNIS: phase space sampling  similar to Sherpal
inference: unfolding, matrix element method, Bayesian inference
efficient event shipping

. ZMH + {1 s 2, 3} jets [Z-peak, variable jet number, jet-jet topology]
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INN-generator [2110.13632)

- stable bijective mapping

Go(n—
latent r ~ Pigent ———— phase space x ~ Pyata
— Gg(x)
- tractable Jacobian Z + 1 jet exclusive
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Controlled precision generator

Best of GAN: discriminator
- D = 0 (generator) vs D = 1 (training)

- Neyman Pearson-optimal discriminator 1
D(X) N pda1a(X) s

Pazta(X) + Progel (X)
_ D(x) Pdata(X)
W) = 1 — D(x) - Prodet (X)

= Dual purpose: control and reweight

- learned event weight

7 + 1 jet exclusive 7 + 1 jet exclusive
—— Reweighted 0.2
— INN

—— Reweighted

normalized
normalized
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Controlled precision generator

Best of GAN: discriminator
- D = 0 (generator) vs D = 1 (training)
- Neyman Pearson-optimal discriminator

pda1a(X) 1
D _ Fdaa\A) _
) = Pdata(X) + Pmodel (X)
- learned event weight (x) = D), Ppaata(X)

B 1- D(X) pmodel(x)
= Dual purpose: control and reweight

Joint training  [@AN inspiration]

- GAN-like training unstable [Nash equilibrium??] 03 Z + 3 jet exclusive
. X - —— Reweighted
- coupling through weights 202 —— DiscFlow
201

/d pdat 1( ) log Pmodel (X)
pmodel (X Pdata (X)

= Unweighted, controlled events 5 191-=




Precision generator with uncertainties

Bayesian network generator

Z + 1 jet exclusive

- network with weight distributions  [cal 2016)]
Sample Welghts [defining error bar]
working for regression, classification
frequentist: efficient ensembling

= Training-related error bars
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http://www.cs.ox.ac.uk/people/yarin.gal/website/

Precision generator with uncertainties

Bayesian network generator

- network with weight distributions  (cal (2016)]
Sample Welghts [defining error bar]
working for regression, classification
frequentist: efficient ensembling

Z + 1 jet exclusive

= Training-related error bars g0
o ERUN —— Reweighted

Theory uncertainties veig]
—— Train

- BNN regression/classification: 10.0

systematics from data augmentation ST

- systematic uncertainties in tails 0.1

1.1

S10

1 pT,h — 15 GeV 2 0.9

w=1+a _—
100 GeV 210
ale

- augment training data (a=o...30

- train conditionally on a
error bar from sampling a - - :
0 50 100 150

= Controlled per-cent precision i [GeV)



http://www.cs.ox.ac.uk/people/yarin.gal/website/

Controlling generative networks

Compare generated with training data  [2305.16774]

- easy for regression A = (Agata — Amodel)/Adata
- unsupervised density — supervised density ratio

D(x;) Pdata (Xi)
w(X;) = =
() 1 —D(X))  Pmodel(Xi)
- classifier more precise and reliable
— Weight ratio over interpretable phase space



Controlling generative networks

Compare generated with training data [2305.16774]

- easy for regression A = (Asata — Amodel)/ Asata
- unsupervised density — supervised density ratio

D(x;)

_ Pdata (Xi)

w(x;) =

- classifier more precise and reliable
— Weight ratio over interpretable phase space

Event generato I'S [same for jets, calorimeter showers]

- shapes of w-histogram vs phase space
- shifted weights indicating poor resolution

T =Dk

Prmodel (X;)
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Controlling generative networks

Compare generated with training data  [2305.16774]

- easy for regression A = (Agata — Amodel)/Adata
- unsupervised density — supervised density ratio
D(Xi) pdala(Xi)
w(Xj) = =
%)= T2D0%) ~ Proa()
- classifier more precise and reliable

— Weight ratio over interpretable phase space

Event generato I'S [same for jets, calorimeter showers]

- shapes of w-histogram vs phase space
- small weights indicating missing feature

— Generative xAl




Conditional flow matching

Diffusion, better than flows [2305.10475]
- denoising as generative model

poct = {gft:ffx)) = N(x:0,1) e
- encode density in velocity (continuity equation]
3"5;;’ D 9y lpx, v(x, ] = 0
generate from velocity  [using ODE solvers]
Bp(axt, D v, bt v =0 o d’;(tt) — v(x(1), 1)




Conditional flow matching

Diffusion, better than flows [2305.10475]

- denoising as generative model

Pdata(X) t—0
P = {nmm(x) N(x;0,1) t 1

- encode density in velocity (continuity equation]

PO 4 9l v(x, D] = 0
generate from velocity  {using ODE solvers]
PO 4 9 lplx, tvx, ] = 0 PO vxn.
- linear interpolation conditional on data distribution
o Xo t—0
x(tlxo) = (1 t)xo+tr—>{r~N(0’1) 1

p(x, t|x0) = N(x; (1 — t)xo, t)
dx(t]x)
at
- conditional continuity equation
ap(x, %)
ot
— evolution for single path done

v(x(t|x0), t|xo) =

=—Xo+r

+ Vx [p(x; txo)v(x, t|x)] = 0




Conditional flow matching

Unconditional density and velocity
- probability distribution using prior
px. ) = [ dto plx. txo) psaalic)
- velocity from continuity equation

P(X, t[X0)V(X, t|Xo)Pdata(X0)
v(x,t) / dxo PO, )

- regression loss for velocity o likeliood, fudged BNN option]
Lom = ( vo(x(tlx), 1) = v(x(tixa), o)l )

t,X0 ~Pdata "



Conditional flow matching

Unconditional density and velocity
- probability distribution using prior
px.) = [ d plx. tx) psaa(o)
- velocity from continuity equation

P(X, t|X0)v(X, t[X0)Pgata(Xo)
v(x,t) / dxo PO D)

- regression loss for velocity  [no likelihood, fudged BNN option]
Lomn = ( vo(x(tlx), 1) = v(x(tx0), txo)] )

1,X0 ~Pdata "

B-CFM for LHC events
- toy models: CFM more expressive

7+1 jet exclusive

- events: Z+1 jet exclusive
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Conditional flow matching

Unconditional density and velocity
- probability distribution using prior
px.) = [ d plx. tx) psaa(o)

- velocity from continuity equation
X, txo)v(x, t|x X(
vix, 1 /dx P(x, t[X0)v(X; t[X0)Pdata(X0)
p(x, 1)
- regression loss for velocity  [no likelihood, fudged BNN option]

Lcem = < [ve (x(t]x0), t) — v(x(t|X0), t\xo)]2 >

1,X0 ~Pdata "

B-CFM for LHC events

- toy models: CFM more expressive
- events: 107 7+3 jet exclusive 04

Z+3 jet exclusive

— True
—— CFM
Train

o
True g
JR— 1
CFM 09|
£
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Conditional flow matching

Unconditional density and velocity
- probability distribution using prior
px.) = [ d plx. tx) psaa(o)
- velocity from continuity equation
vix, 1 /dx p(x, t|x0) Vl())((xt\t))(o)Pdata(Xo)

- regression loss for velocity  [no likelihood, fudged BNN option]
Lomn = ( vo(x(tlx), 1) = v(x(tx0), txo)] )

1,X0 ~Pdata "

B-CFM for LHC events
- toy models: CFM more expressive
- events:

Z+jets inclusive

o 1072
K] True
T —— CFM
107 Train
) z
— Sub-percent precision
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Direct diffusion

Structural advantage of CFM model (2311.17175]

- sample from one distribution into another
avoid learning some features
- example: off-shell top decays from on-shell top decays
X ~ Pon(X) ——— X ~ Pmodel(X) ~ Poir(X)
- standard CFM with boundary conditions

pcﬁ(x) t—=0

pix; 1) = {pon(x) t 1

— Similar to Flows4Flows, much easier
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- data-driven optimal transport
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Direct diffusion

Structural advantage of CFM model  [2311.17175)

- sample from one distribution into another
avoid learning some features
- example: off-shell top decays from on-shell top decays
X~ Pon(X) ——— X~ Pmodel(X) ~ Pofi(X)
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-
9

L
50 200 250




Direct diffusion

Structural advantage of CFM model (2311.17175]

- sample from one distribution into another

avoid learning some features

- example: off-shell top decays from on-shell top decays

X ~ Pon(X) +— X

- standard CFM with boundary conditions

p(x, 1) —

— Similar to Flows4Flows, much easier

Precision benefits
- data-driven optimal transport
- high-precision features
- minimal failure modes

— More applications?

poﬁ(x)
Pon(X)

~ Pmodel (X) ~ Poft(X)

t—0
t—1

-
=)
2

Normalized
-
(=]
b

5]
L

1072 107! 10° 10" 10
w(x;)



JetGPT

Correlations through self-attention  [2305.10475]

- think of data as bins in phase-space directions
self-attention: encode relation between bins

input x, learn relation x; < x; VV
- latent query representation g = W9x o Ywk, M @k softmax | Y
latent key representation k = WKx . } < ke —g ~:I\:(7} ac
define correlation as Aj = g; - k; " )\ ¢
W vy v —
- latent value representation v = WVx v agug = T

outputz = Av
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Correlations through self-attention  [2305.10475]

- think of data as bins in phase-space directions
self-attention: encode relation between bins

input x, learn relation x; < x;

- latent query representation g = W%x
latent key representation k = WKx
define correlation as Aj = q; - k;

- latent value representation v = WVx
outputz = Av

Autoregressive generator
- factorized density

Prodei(x16) = T T p(xilx1, .. xi—1)
i
- bins — Gaussian mixture model

- autoregressive Aj = 0 forj > i
— Bayesian version for uncertainties

T

pi Rk }m.
} — L(, —q ~'1.',(7
.'r(‘

wVv v v —
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’@’w‘“‘* Plal0®)

L > w©
N > p(x;lw“’)

L . E&@: .
i H : M
I

©®

0D = plal®D)
|

[



JetGPT

Correlations through self-attention  [2305.10475]

- think of data as bins in phase-space directions

self-attention: encode relation between bins
input x, learn relation x; <> x;

- latent query representation g = W%x
latent key representation k = WKx
define correlation as A; = q; - k;

- latent value representation v = WVx
outputz = Av
Bayesian JetGPT
- sometimes you win...
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JetGPT

Correlations through self-attention  [2305.10475]

- think of data as bins in phase-space directions
self-attention: encode relation between bins ,

input x, learn relation x; <> x; Iy
i kl ik } _softmax__ =

- latent query representation g = W9x WK
latent key representation k = WKx } ke —q ke ac
define correlation as Aj = q; - k; " ajul .
- latent value representation v = WVx A

outputz = Av

Bayesian JetGPT
. sometimes you win... Z+1 jet exclusive
. . 0.2
...and sometimes there is work to do... 3 Truth
;g — AT
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Towards ML-Madgraph/MadNIS

MadNIS  [2212.06172,2311.01548]
replacing Vegas in Madgraph
INN with online-buffered training
multi-channel network
— Gain over Madgraph

Matrix element method [2210.00019,2310.07752]
parton-level likelihood per event Modern Machine Learning for LHC Physicists
CFM/transformer for evolution Tilman Plehn”; Anja Butter*”, Barry Dillon”, Claudius Krause®, and Ramon Winterhalder”

H ; “ Institut fiir Theoretische Physik, Universitit Heidelberg, Germany
INN for mtegratlo n ¥ LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
©NHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, USA

. efﬁciency network 4 CP3, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
July 21,2023

— Method working

Abstract

Modern machine learming s transforming partcle physics, faster than we can follow, and bullying its way into our
‘numerical tool box. For young researchers it is crucial 10 stay on top of this development, which means applying cuting-
e methodsand ol o e fll e of LHC physes problens. Thee It s are et ol s i
\d significant enthusiasm for machine leaming to relevant applications as fast as
fic motivation and a non-standard introduction to neural networks and then cover

fication, generative networks, and inverse problems. Two themes defining much of the
discussion are well-defined loss functions reflecting the problem at hand and uncertainty-aware networks. As part of the
applications, the notes include some aspeets of theoretical LHC physics. All examples are chosen from paticle physies
publications of the last few ears. Given that thesc notes will be outdated already at the time of submission, the weck of
MLJets 2022, they wil be updated frequenly.



http://www.thphys.uni-heidelberg.de/~plehn/pics/modern_ml.pdf
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