

Valentina Sola Università degli Studi di Torino and INFN

Doping Compensation in Thin Silicon Sensors: the pathway to Extreme Radiation Environments

Outline

The Extreme Fluence Challenge

Silicon detectors have been enabling technology for discoveries on particle physics at colliders

- ▷ Precise tracking down to ~ 10 μ m → 1 fC up to 2·10¹⁶ n_{eq}/cm²
- ▷ Precise timing down to ~ 30 ps \rightarrow 5 fC up to 3.10¹⁵ n_{eq}/cm²

 \rightarrow CompleX will enable 4D tracking with planar silicon sensors up to the fluence of 5.10¹⁷ n_{eg}/cm²

Silicon Sensors Working Principles

Sketch of an n-in-p silicon sensor

Silicon sensors are the passive elements of the tracking detector system

Incident particles generate e^{-}/h^{+} pairs that are collected to the electrode once a reverse bias is applied

The movement of the charge carriers induces a signal on the sensor electrodes, which can be read out by the electronics

Requirements from state-of-the art electronics at hadron colliders ightarrow Precise tracking \rightarrow 1 fC

ightarrow Precise timing \rightarrow 5 fC

NB: power budget at high-energy physics experiments has to be kept as low as possible

Silicon Sensors at Very High Fluences

Planar silicon sensors can operate up to $10^{16} n_{eq}/cm^2$

Signals from planar silicon sensors become too small

- ➤ Non-uniformities in the electric field
- Impossible to fully deplete the sensors
- Collected charge independent from thickness

Models of the radiation damage in silicon are validated till ~ $10^{16} n_{eq}/cm^2$

Mismatch between data and predictions arises at higher fluences

- Dark current increase is smaller than expected
- ➤ Charge collection efficiency is higher than predicted
- Increase of the acceptor states slows
- \rightarrow Hints of saturation of the radiation damage effects

Saturation of the Radiation Effects

At fluences above $5 \cdot 10^{15} n_{eq}/cm^2 \rightarrow$ Saturation of radiation effects observed

Silicon detectors irradiated at fluences $10^{16} - 10^{17} n_{eq}/cm^2$ do not behave as expected \rightarrow They behave better

The Advantages of Thin Sensors

What does it happen to a 20 μ m sensor after a fluence of 5.10¹⁶ n_{eq}/cm²?

► It can still be depleted

V. Sola

- ► Trapping is almost absent
- Dark current is low (small volume)

However: charge deposited by a MIP ~ 0.2 fC

- \rightarrow This charge is lower than the minimum charge requested by the electronics (~ 1 fC)
- \rightarrow Need a gain of at least ~ 5 in order to provide enough charge

Towards the eXtreme Fluences – CompleX

CompleX will design a new generation of silicon sensors

- ▷ exploit saturation of the radiation damage
- \triangleright use thin substrates (20 40 μ m)
- ▷ use internal gain to enhance the signal

→ CompleX will develop a new generation of planar silicon sensors with gain to operate in extreme fluence environments

Accurate modelling of silicon damage and sensor behaviour at very high fluences is necessary to design the next generation of silicon detectors

 \rightarrow CompleX will extend the understanding and modelling of radiation damage in silicon to the fluence of 5.10¹⁷ n_{eq}/cm²

Low-Gain Avalanche Diodes

LGADs are n-in-p planar silicon sensors Operated in low-gain regime (20–30) controlled by the external bias Critical electric field $E_c \sim 20-30 \text{ V/}\mu\text{m}$

Gain Removal Mechanism in LGADs

The acceptor removal mechanism deactivates the p⁺-doping of the **gain layer** with irradiation according to

 $p^+(\Phi) = p^+(0) \cdot e^{-c_A \Phi}$

where c_A is the acceptor removal coefficient

 c_A depends on the initial acceptor density, p⁺(0), and on the defect engineering of the gain layer atoms

Single Event Burnout 🤻

Localized melt and vaporization of silicon

Once operated at high electric field, thin sensors fatally break if exposed to particle beams

The effect is called Single Event Burnout (SEB) and apply both to LGAD and PIN sensors

Death Mechanism:

- ▷ Rare, large ionization event Highly Ionising Particle
- ▷ Excess charge leads to highly localized conductive path
- ▷ Collapse of the depleted active thickness
- ▷ Large current flows in a narrow path Single Event Burnout

SEB consequence:

- \rightarrow Impossible to operate irradiated thin sensors above the critical electric field (E_{SEB})
- \rightarrow The E_{SEB} value is higher for thinner sensors

V. Sola

Measurements of **charge collection efficiency** (CCE) with an infra-red laser stimulus show that sensors can be operated up to the highest fluences – **25** μ m thick LGADs

25 µm Thin LGADs

EXFLU0 25 μ m – CCE with Fluence

- The LGAD multiplication mechanism ceases existing at ~ 5.10¹⁵ n_{eq}/cm²
- From 10¹⁶ to 10¹⁷ n_{eq}/cm² the collected signal is roughly constant
- ▷ For electric fields above 14 V/µm, 25 µm thick silicon sensors undergo fatal death once exposed to particle beams (SEB)

\rightarrow Necessary to increase the radiation tolerance of the gain mechanism for 5E15 n_{eq}/cm² and above

LGAD Engineering – State-of-the-Art

Thin sensors from the EXFLU1 batch of FBK are the **sensors most resilient to radiation** ever produced by the FBK foundry

The technology exploits defect engineering through carbon co-implantation in the gain implant region

 \rightarrow After a fluence of 2.5·10¹⁵ n_{eq}/cm², all sensors maintain a gain of about 10 up to the SEB limit

State-of-the-Art Removal Mechanism in LGADs

The acceptor removal mechanism deactivates the p⁺-doping of the **gain layer** with irradiation according to

 $p^+(\Phi) = p^+(0) \cdot e^{-c_A \Phi}$

where c_A is the acceptor removal coefficient

 c_A depends on the initial acceptor density, p⁺(0), and on the defect engineering of the gain layer atoms

▲ thin sensors from the EXFLU1 batch [R.S. White, 43rd RD50 Workshop (2023) CERN]

> \Rightarrow Is it possible to improve c_A further?

Towards a Radiation Resistant Design

The acceptor removal mechanism deactivates the p⁺-doping of the **gain layer** with irradiation according to

 $p^+(\Phi) = p^+(0) \cdot e^{-c_A \Phi}$

where c_A is the acceptor removal coefficient To substantially reduce c_A, it is necessary to increase p⁺(0), the initial acceptor density

Planar Silicon Sensors for eXtreme Fluences

Compensated LGADs for eXtreme Fluences

V. Sola

Compensated LGADs for eXtreme Fluences

Compensated LGADs for eXtreme Fluences

First production of compensated LGADs EXFLU1 batch released end of 2022

First compensated LGAD sensors have been released by FBK in the framework of the EXFLU1 batch

Other R&D paths pursued by the EXFLU1 batch to extend the radiation tolerance of the LGAD sensors:

- ▷ new guard ring design
- ▷ decrease of the acceptor removal carbon shield
- \triangleright thin substrates (15–45 µm)

Design and preparatory studies have been performed in collaboration with the **Perugia group**

 \rightarrow The EXFLU1 wafers exited the FBK clean room at the end of 2022

[V. Sola, TREDI 2024, Torino]

Compensated Gain Layer Design – Split Table

Active thickness 30 μm

Wafer #	Thickness	p+ dose	n+ dose	C dose
6	30	2 a	1	
7	30	2 b	1	
8	30	2 b	1	
9	30	2 c	1	
10	30	3 a	2	
11	30	3 b	2	
12	30	3 b	2	
13	30	3 b	2	1.0
14	30	3 c	2	
15	30	5 a	4	

3 different combinations of $p^+ - n^+$ doping: 2 - 1, 3 - 2, 5 - 4

Joint Instrumentation Seminar – DESY Hamburg – 28.06.2024

[a < b < c]

Compensated LGAD – I-V on wafer

IR Laser Stimulus on Compensated LGAD

TCT Setup from Particulars

Pico-second IR laser at 1064 nm Laser spot diameter ~ 10 μm Cividec Broadband Amplifier (40dB) Oscilloscope LeCroy 640Zi Laser intensity ~ 4 MIPs

$$Gain = \frac{CLUAD}{\langle Q_{PiN} \rangle}$$

 \rightarrow Not trivial to operate compensated LGAD sensors

Secondary Ion Mass Spectroscopy – W15

V. Sola

- ▷ Boron peak is shallower than phosphorus
- ▷ Boron peak is lower than predicted from simulation

SIMS Profile & I-V – 5–4

\rightarrow The simulated I-V reproduces the trend of the measured I-V from W15

I-V from Compensated LGAD – Irradiated

IR Laser Stimulus on Compensated LGAD

TCT Setup from Particulars

Pico-second IR laser at 1064 nm Laser spot diameter ~ 10 μm Cividec Broadband Amplifier (40dB) Oscilloscope LeCroy 640Zi Laser intensity ~ 4 MIPs T = -20°C

> Laser stimulus on a LGAD-PiN structures before and after irradiation

$$Gain = \frac{Q_{LGAD}}{\langle Q_{PiN}^{No Gain} \rangle}$$

 \rightarrow Good gain behaviour of the compensated LGAD sensors after irradiation \rightarrow Even in compensated LGADs, **the usage of carbon mitigates the acceptor removal**

Strategies to Investigate Donor Removal

A p-in-n LGAD batch will be used to study the donor removal coefficient, c_D Donor removal has been studied for doping densities of $10^{12} - 10^{14}$ atoms/cm³ We need to study donor removal in a range $10^{16} - 10^{18}$ atoms/cm³

By means of the TCAD simulation, the donor removal is extracted from the C-V characteristics of the compensated LGAD sensors

Exploiting the experimental acceptor removal coefficient $c_A = 2.5 \cdot 10^{-16} \text{ cm}^2$, agreement with C-V measurements is achieved using a donor removal coefficient $c_D = 6.5 \cdot 10^{-16} \text{ cm}^2$

A. Fondacci et al., agenda.infn.it/event/37033/contributions/227539]

n+

β Particles on Compensated LGAD

β Setup

The CompleX Flow

- **WP1** Sensor design and production
- WP2 Sensor irradiation
- WP3 Testing and data analysis
- **WP4** Modelling of radiation effects

iterating over 3 times

CompleX

Workflow The pathway to Extreme Fluences WP1

The CompleX Team

	Torino University					
	CompleX work packages:					
	WP1 – Sensor design and production	Fondazione Bruno Kessler				
-	WP2 – Sensor irradiation					
	WP3 – Testing and data analysis		Re-			
[WP4 – Modelling of radiation effects	INFN				

The CompleX Objectives

CompleX work packages:

- **WP1** Sensor design and production
- WP2 Sensor irradiation
- WP3 Testing and data analysis
- **WP4** Modelling of radiation effects

CompleX objectives

- (i) Extend and develop a radiation damage model able to describe silicon behaviour, including saturation effects, under irradiation up to $5 \cdot 10^{17} n_{eq}/cm^2$
- (ii) Design LGAD silicon sensors that provide a charge of ~ 5 fC per particle hit up to fluences of 5.10¹⁷ n_{eq}/cm²
- (iii) Define a production process to build costeffective radiation-tolerant detectors through the **p-n dopant compensation**

The CompleX Strategy

The CompleX Outcome

The CompleX Impact

Enable the **design of silicon 4D tracker detectors for future** high-energy and high-intensity hadron collider experiments

Boost the **technology in all extreme radiation environments** e.g. monitoring at nuclear fusion reactors

European Research Council

ere

We acknowledge the following funding agencies and collaborations

- ▷ INFN CSN5
- RD50 and DRD8, CERN
- ▷ AIDAinnova, WP13
- ▷ Compagnia di San Paolo
- Ministero della Ricerca, Italia, PRIN 2022, progetto 2022RK39RF ComonSens

 This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreements Nos-101004761 (AIDAinnova) and 101057511 (EURO-LABS)

This project is funded by the European Union (ERC, CompeX, 101124288) Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

