

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF KRAKOW

Readout status and plan

Current readout status - FLAXE ASIC

- Technical details about packaging fixed (bonding scheme, marking)
 - We should get final confirmation and shipping date around 10th of February
- The expected shipping date of ~1000 packaged ASICs is around ~April 2024

Current readout status - FLAXE ASIC

- With the bonding scheme fixed, I just (this week) started the design of:
 - Single FLAXE ASIC test board required for ASIC verification and characterization
 - Schematic almost done, PCB not started yet
 - This board have to be ready till the end of Q1 2024 (before ASICs arriving)
 - FEB design
 - Lot of issues still to be resolved (like connector from FEB to patch panel)
 - At least the "front-end" (fanout connectors, ASICs placement and decoupling) should be done asap (hopefully before Valencia meeting) since it is needed for the fanout and HV flex design by Yan
 - Foreseen to be ready till the end of Q2 2024

Current readout status - DAQ hardware

DAQ hardware (PCBs and mechanics) in progress:

- Mechanic is fixed (19" Eurorack from nVent Schroff)
 - 3D model with all cards and connectors prepared and verified
 - One rack already bought for tests
- PCBs:
 - Backplane almost ready (schematic and PCB)
 - Cards in progress (schematics in progress,
 PCB only mechanics-related components placed)

Target: complete DAQ (one rack) and FEB (how many?) for testbeam in Q3 2024

We have tested the cables (and fibers) to communicate DAQ rack with the FEBs in the

cavern (~60m)

Position foreseen for backend electronics:

- In UG03 (not accessible during data-taking).
- In UG02 (potentially accessible at every time but for short stay and space limited).
- In surface building (further away), space to be understood.

Area	Length
UG03: Side north wall	7 m
UG03: EuXFEL rack	16 m
UG02	26 m
Surface: service room	$\approx 50 \mathrm{m}$

Targets:

- Find a medium to transmit the system clock and acquisition control signal from DAQ to the cavern with long-term phase drift <1ns
- Check if Cat6/6a RJ45 cables (widely available and cheap) can be used to send data from the cavern to the DAQ

Test setup:

- Signal generator providing 20MHz square wave
 - Custom "SFP breadboard" PCB, commercial 1Gbps SFP modules (GBC PHOTONICS SF-MM85055D-GP, FOUNDRY TXN311110000001), 50m long multi-mode fiber (OM2 Qoltec 54030)
 - 50m long, low-loss 50Ω coaxial cable Siva Cavi RF240LTA (1.4 EUR / m)
 - 50m long Cat6a RJ45 cable Logilink CQ3143S

- High speed scope measuring the signal delay and jitter
- Climatic chamber

Test program

- Delay and jitter measurements for temperature in range from -20 to +50 °C
- Delay and jitter measurements for varying humidity (not done yet)

Delay drift

All three medium have drift <1ns

Fiber is surprisingly the worst one ranging from -0.6ns to +0.1ns!!

Coaxial cable seems the best choice, with $drift < \pm 150ps$

Relative jitter

RJ45 – too large for clock, ok for data

Nominal (20°C) jitter

• Fiber: 7.4 ps

Coaxial: 7.4 ps

• RJ45: 161 ps

Fiber, coaxial – ok!

Attenuation

Both coaxial and RJ45 attenuation well suited for clock and data transmission:

Worst case is -1.8dB (80% of original amplitude) after 50m.

We can expect less than -3.5dB (67% of the original amplitude) after 100m

No attenuation data for fiber since SFP receiver recreates the electrical signal

Current readout status - summary and schedule

Comments:

- Currently I am working on all of this completely alone
 - Most likely a (very good) master student should join within ~month
 - Together with Dawid they can take all the "verification / characterization / tests" tasks leaving me with all the design
 - Please understand that I am not able to take care of the TB data integrity in parallel
- There is no place in schedule for EUDAQ software! There will be DAQ software of course, but not integrated with EUDAQ without help from others!

Current readout status - summary and schedule

- One of the the main showstoppers clock and other signals distribution resolved
- No info about ASICs fabrication progress (no bad info is a good info), ASICs expected ~April
- Hardware design in progress, no delay or showstoppers so far
- Firmware not yet started, but (at least for the first testbeam) it is not a huge task
- No time to prepare EUDAQ integrated software. Can someone with:
 - C/C++ experience,
 - EUDAQ knowledge (or willing to learn) help to develop it? (not now, rather end of Q2 2024)
- We are searching for post-doc (software or hardware oriented would be best)
- Our goal is a testbeam at the end of Q3 2024 with at least one FEB (layer)
- We need dose and neutron equivalent flux estimation in the space above the ECAL to - start the patch panel PCB design!
 - complete the FEB design!