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Motivation
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1. kmax generally not discussed in the litterature.

2. If u=Q, UPDFs constrained on [0, Q] but integration up to
kmax.- UPDFs built only from (2) can in principle have any
value for k; € [Q,kmax]. giving any result for the cross section.

3. Overestimation of the D-meson cross section using KaTie. Not
the case if [ dk?F(x,ki;b) =f(x;10).
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D-meson cross section
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All these results will be explained by the fact that kmax = Ur.

Interesting to perform similar calculations for F, in a Yukawa theory.
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The Yukawa theory

Interest: Everything can be calculated perturbatively, including the
exact (not factorized) F5.

. 1 2
L =Y (W v~ Qu) P ]~ Mg+ (09~ 20
J
3)
A (V120 + ¥V, y19),

J=1,2, yi = yy represents the target “nucleon" with mass
M| =my, Y =y, is the “quark" field with mass m,, and ¢ is the
“scalar gluon™.

® The expression for the exact &(A2) F, given in Aslan et al.,
Phys. Rev. D 107 (2023) 7 074031
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DIS
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s =3 x 10* GeV? : Mandelstam variable for the EIC kinematics.

Use the WKMR UPDFs computed in the Yukawa theory (shown
later).
Green: LO on-shell hard coefficient.

Pink: Off-shell hard coefficient. Here, k; < Q in the dominant

region (xpj ~ x).
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Detour by the TMD factorization
Fr=W+Y. The W term includes the TMD PDF

|| Phrtekem VoY et = [T dlaftken) Ve B (@)
0 0

The Y term includes the collinear contribution and a subtraction
term to avoid double counting

R2 (x;) 2 B di?
f(x;,u)(o)®F§1) —sub. = ay (1 —xp;) </ b)) dk? _/ dk; ) :
0 0

K (b )7 @
()
With &2 (x) = U292 the max ; allowed by the (on-shell and
massless) kinematics.
At small x, the Y term can be written as
kn(wg) k2
Y:a,l(l—xbj)/“2 K(ijt)klz (6)
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Some

comments

The k,-fact. formalism includes only the W term.
The u dependence cancels between the W and Y terms.

TMD formalism cuts the k, integral at u? ~ Q%. In other
words, kmax ~ Q (remember the plots for D mesons).

Small k, < Q in TMD PDFs, large k; > Q in the hard
coefficient.
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Main claim: kmnax = UF

Definition of the UPDFs (first try).

(Early time) UPDFs product of the BFKL factorization of the cross
section

2\ W)
Fy(ksu) =fn()Cn(k ) Cy(k,p) = yN]Et;XS) (:it2> (7)

The resummation factor obeys
Hoo
/0 di>Cy (k1) = 1, (8)

and is solution of the BFKL equation.

Where does the scale u in Cy comes from?
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Main claim: kmnax = UF

® From the subtraction of small k;, to define an infrared-safe
impact factor.

® “u" appears in the modified BFKL equation in Collins" paper.
Let's call it up, to differentiate with p in collinear PDFs.

® Then, the cross section is k; factorized, with small k; < g in
UPDFs and large k; > up in the impact factor = kmax = Up.

Definition of the UPDFs (second try).

o k2 (o)
Fy (ke b, pir) = fu () Cn (ke pir); - Cn (e, i) = YNliz ) <utz>
t F

HF ) I”l'[%":klgnax 2
/0 dktCN(klhuF):Lor/O dktF(kal;.u7“F) Zf(xaﬂ)
(10)
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Factorization scale dependence
Check that F;, with the on-shell hard coefficient o< §(1 —xy;) and
kmax = Ur, is Up independent. For pup = Q and up = /s> Q

F>

xbj

=TM! {fN(u)/OQ dk?CN(kz,Q)} =fluwjp)  (11)

F>

xbj

TV {wa / Sdk?cmkt,s)} i) (12)

Usually, félzNQZ dkZF (x, ks 1) = f(x, ). It implies ur ~ Q. At the
same time k, integrated above Q, say, up to k2., = s = U2

Inconsistent, leads to an overestimation
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Possible choices: partial answer

1. Use up = u ~ Q and stop the k; integration at Q.
® WKMR UPDFs or similar are fine and have the correct
perturbative behavior at large &, (i.e. 1/k?).

® But the transverse-momentum is usually integrated to far away.

2. (Not recommended) use pp = +/s > Q and integrate k, above

0.
® Then, UPDFs should obey [3 dk?F (x,k:; iss) =f(x, 1) .

3 10F
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Phys.Rev.D 107 (2023) 1, 014015

kmax = Ur : No k; integration in a region where the UPDFs are not
constrained!
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More on UPDFs

fle, 1) =[5 dk2.F (x,ke; i) : Why is this quantity not divergent?

The Feynman rules for collinear PDFs give UV divergences,
renormalized with a counterterm.

In the Yukawa theory, the Feynman rules for collinear PDFs are the
same as for TMDs integrated over k;.

f(x;u):/dzktf(x,kt;u)—irC.T. (14)
Unusual, but we can write

(Znu)zs/dz’%k, ct.(u)= CT. (15)
and

F(x, k1) = F(x, ks ) + c.t.(p) (16)
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lllustration with the KMRW UPDFs

Starting with the usual definition

0
Flukit) = 2o Tl kizpo (17)
Fy(x kii?) = 5= Ty(to, Wy (v, o), ki< o, (18)
e

and using the expression for the &(A?) collinear PDF, we find

Fy(x k) /x = %(1 X, k> o (19)
X 2 2
Fo(x ki 12 Jx = uéa,l(l—x) <i§x;2 +ln <A‘(‘;’)2> 1> .k < o,
(20)

At this order, the Sudakov factor is 1.
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lllustration with the KMRW UPDFs
The MS C.T. is

o 1_ _ £ 2-2¢ CL?L I—x
a (1 x)(8 ]/E+ln47r>+ﬁ(£)_(27tu) /d ktﬂi(kzz+ﬂ2)'

(21)
Including the integrand to the KMRW UPDF leads to the
modification

2
a ap, u
—(1—=x)—= =1 —X) 55— 22
NE — Usual KMR PDF
g ---------- KMR PDF +CT
Q%10
107 ¢

107
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Final comments

A negligible value in the region k; > u is typical of UPDFs obeying
Jo dig T (x, ks 1) = f (x; ).

In this case, any kmax > Q is fine (this is the third
“recommendation”).

Otherwise, the simpler choice is probably pur=pu ~ Q.

Setting kmax 7 Ur does not lead necesarily to an overestimation,
depending on the kinematics.
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