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Motivation

F2(xbj,Q) =
∫ 1

Q2/s
dx
∫ k2

max

0
d2ktFq(x,kt;Q)F̂2(x,Q,kt) (1)

with

∫
µ2

0
dk2

t F(x,kt; µ) = f (x; µ) (2)

1. kmax generally not discussed in the litterature.

2. If µ = Q, UPDFs constrained on [0,Q] but integration up to

kmax. UPDFs built only from (2) can in principle have any

value for kt ∈ [Q,kmax], giving any result for the cross section.

3. Overestimation of the D-meson cross section using KaTie. Not

the case if
∫

∞

0 dk2
t F(x,kt; µ) = f (x; µ).
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D-meson cross section

All these results will be explained by the fact that kmax = µF.

Interesting to perform similar calculations for F2 in a Yukawa theory.
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The Yukawa theory

Interest: Everything can be calculated perturbatively, including the

exact (not factorized) F2.

L =∑
j

i
2
[
ψ jγ

µ
∂µψj − (∂µψ j)γ

µ
ψj
]
−Mjψ jψj +

1
2
(∂φ)2 − m2

s

2
φ

2

(3)

−λ (ψ1ψ2φ +ψ2ψ1φ) ,

j = 1,2, ψ1 = ψN represents the target �nucleon" with mass

M1 = mp, ψ2 = ψq is the �quark" �eld with mass mq, and φ is the

�scalar gluon".

• The expression for the exact O(λ 2) F2 given in Aslan et al.,
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DIS
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Off-shell

s = 3×104 GeV2 : Mandelstam variable for the EIC kinematics.

Use the WKMR UPDFs computed in the Yukawa theory (shown

later).

Green: LO on-shell hard coe�cient.

Pink: O�-shell hard coe�cient. Here, kt ≲ Q in the dominant

region (xbj ∼ x).
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Detour by the TMD factorization
F2 = W +Y. The W term includes the TMD PDF∫

∞

0
d2kt f (x,kt; µ)(1)⊗F(0)

2 +CT =
∫

µ2

0
d2kt f (x,kt; µ)(1)⊗F(0)

2 (4)

The Y term includes the collinear contribution and a subtraction

term to avoid double counting

f (x; µ)(0)⊗F(1)
2 − sub.= aλ (1−xbj)

(∫ k̂2
m(xbj)

0

dk2
t

κ(xbj)k2
t
−
∫

µ2

0

dk2
t

k2
t

)
,

(5)

With k̂2
m(x) =

(1−x)Q2

4x the max kt allowed by the (on-shell and

massless) kinematics.

At small x, the Y term can be written as

Y ≃ aλ (1− xbj)
∫ k̂2

m(xbj)

µ2

dk2
t

κ(xbj)k2
t

(6)
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Some comments

• The kt-fact. formalism includes only the W term.

• The µ dependence cancels between the W and Y terms.

• TMD formalism cuts the kt integral at µ2 ∼ Q2. In other

words, kmax ∼ Q (remember the plots for D mesons).

• Small kt < Q in TMD PDFs, large kt > Q in the hard

coe�cient.
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Main claim: kmax = µF

De�nition of the UPDFs (�rst try).

(Early time) UPDFs product of the BFKL factorization of the cross

section

FN(kt; µ) = fN(µ)CN(kt,µ); CN(kt,µ) =
γN(αs)

k2
t

(
k2

t

µ2

)γN(αs)

(7)

The resummation factor obeys∫
µ

0
dk2

t CN(kt,µ) = 1, (8)

and is solution of the BFKL equation.

Where does the scale µ in CN comes from?
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Main claim: kmax = µF
• From the subtraction of small kt, to de�ne an infrared-safe

impact factor.

• �µ� appears in the modi�ed BFKL equation in Collins' paper.

Let's call it µF, to di�erentiate with µ in collinear PDFs.

• Then, the cross section is kt factorized, with small kt < µF in

UPDFs and large kt > µF in the impact factor ⇒ kmax = µF.

De�nition of the UPDFs (second try).

FN(kt; µ,µF) = fN(µ)CN(kt,µF); CN(kt,µF) =
γN(αs)

k2
t

(
k2

t

µ2
F

)γN(αs)

(9)

∫
µF

0
dk2

t CN(kt,µF) = 1, or
∫

µ2
F=k2

max

0
dk2

t F(x,kt; µ,µF) = f (x,µ)

(10)
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Factorization scale dependence
Check that F2, with the on-shell hard coe�cient ∝ δ (1− xbj) and
kmax = µF, is µF independent. For µF = Q and µF =

√
s ≫ Q

F2

xbj
= TM−1

{
fN(µ)

∫ Q2

0
dk2

t CN(kt,Q)

}
= f (xbj; µ) (11)

F2

xbj
= TM−1

{
fN(µ)

∫ s

0
dk2

t CN(kt,s)
}
= f (xbj; µ) (12)

Usually,
∫ µ2∼Q2

0 dk2
t F(x,kt; µ) = f (x,µ). It implies µF ∼ Q. At the

same time kt integrated above Q, say, up to k2
max = s = µ2

F.

Inconsistent, leads to an overestimation

F2

xbj
= TM−1

{
fN(µ)

∫ s

0
dk2

t CN(kt,αs; µ)

}
= f (xbj; µ)+TM−1

{
fN(µ)

∫ s

µ2
dk2

t CN(kt,αs; µ)

}
(13)
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Possible choices: partial answer
1. Use µF = µ ∼ Q and stop the kt integration at Q.

• WKMR UPDFs or similar are �ne and have the correct
perturbative behavior at large kt (i.e. 1/k2

t ).
• But the transverse-momentum is usually integrated to far away.

2. (Not recommended) use µF =
√

s ≫ Q and integrate kt above
Q.

• Then, UPDFs should obey
∫ s

0 dk2
t F(x,kt; µ;s) = f (x,µ) .

kmax = µF : No kt integration in a region where the UPDFs are not

constrained!
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More on UPDFs

f (x,µ) =
∫

∞

0 dk2
t F (x,kt; µ) : Why is this quantity not divergent?

The Feynman rules for collinear PDFs give UV divergences,

renormalized with a counterterm.

In the Yukawa theory, the Feynman rules for collinear PDFs are the

same as for TMDs integrated over kt.

f (x; µ) =
∫

d2kt f (x,kt; µ)+C.T. (14)

Unusual, but we can write

(2πµ)2ε

∫
d2−2εkt c.t.(µ) = C.T. (15)

and

F (x,kt; µ) = F(x,kt; µ)+ c.t.(µ) (16)
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Illustration with the KMRW UPDFs

Starting with the usual de�nition

Fq(x,kt; µ) =
x
π

∂

∂k2
t
[Tq(kt,µ)fq(x,kt)] , kt ≥ µ0 (17)

Fq(x,kt; µ
2) =

x
µ2

0 π
Tq(µ0,µ)fq(x,µ0), kt < µ0, (18)

and using the expression for the O(λ 2) collinear PDF, we �nd

Fq(x,kt; µ)/x =
aλ

πk2
t
(1− x), kt ≥ µ0 (19)

Fq(x,kt; µ
2)/x =

1
µ2

0 π
aλ (1− x)

(
χ(x)2

∆(x)2 + ln
(

µ2
0

∆(x)2

)
−1
)
, kt < µ0,

(20)

At this order, the Sudakov factor is 1.
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Illustration with the KMRW UPDFs
The MS C.T. is

aλ (1−x)
(

1
ε
− γE + ln4π

)
+O(ε) = (2πµ)ε

∫
d2−2εkt

aλ

π

1− x
(k2

t +µ2)
.

(21)

Including the integrand to the KMRW UPDF leads to the

modi�cation
aλ

πk2
t
(1− x)→ aλ

π
(1− x)

µ2

k2
t (k2

t +µ2)
(22)
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Final comments

A negligible value in the region kt > µ is typical of UPDFs obeying∫
∞

0 dk2
t F (x,kt; µ) = f (x; µ).

In this case, any kmax > Q is �ne (this is the third

�recommendation�).

Otherwise, the simpler choice is probably µF = µ ∼ Q.

Setting kmax ̸= µF does not lead necesarily to an overestimation,

depending on the kinematics.
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