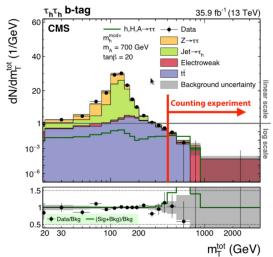
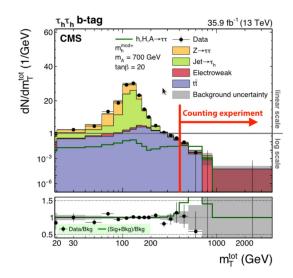
# **Combine Tutorial**


Terascale Statistics School Kyle Cormier, Aliya Namigova, Nick Wardle

# Introduction

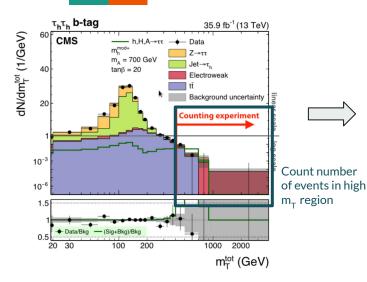
### **Overview**

Search for a heavy neutral higgs, Which decays to  $\tau\tau$ 


- 1. Simple Counting Experiment
- 2. Shape Based Analysis
- 3. Adding Control Regions
- Physics models beyond a single
   Signal strength parameter



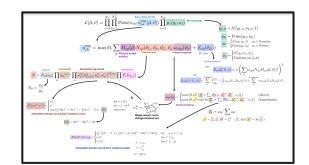
### **Overview**


Search for a heavy neutral higgs, Which decays to  $\tau\tau$ 

- Limit Setting
- Significance Testing
- Asymptotic Calculations
- Toy-based Calculations
- Parameter Extraction
- Fit Debugging
- Fit Plotting
- Nuisance Parameter Checks
- Multi-Dimensional Likelhood Scans



# Part 1 – Counting Experiment


# **Counting Experiment**



| <pre>imax 1 number of bins  jmax 4 number of processes minus 1 kmax * number of nuisance parameters observation</pre> |     |               |               |               |               |            |  |
|-----------------------------------------------------------------------------------------------------------------------|-----|---------------|---------------|---------------|---------------|------------|--|
| bin signal_region<br>observation 10.0 backgrounds                                                                     |     |               |               |               |               | signal     |  |
| bin                                                                                                                   |     | signal_region | signal_region | signal_region | signal_region | signal_reg |  |
| process                                                                                                               |     | ttbar         | diboson       | Ztautau       | jetFakes      | bbHtautau  |  |
| process                                                                                                               |     | 1             | 2             | 3             | 4             | 0          |  |
| rate                                                                                                                  |     | 4.43803       | 3.18309       | 3.7804        | 1.63396       | 0.711064   |  |
|                                                                                                                       |     |               |               |               |               |            |  |
| CMS_eff_b                                                                                                             | lnN | 1.02          | 1.02          | 1.02          | -             | 1.02       |  |
| CMS_eff_t                                                                                                             | lnN | 1.12          | 1.12          | 1.12          | -             | 1.12       |  |
| CMS_eff_t_highpt                                                                                                      | lnN | 1.1           | 1.1           | 1.1           | -             | 1.1        |  |
| acceptance_Ztautau                                                                                                    | lnN | -             | -             | 1.08          | -             | -          |  |
| acceptance_bbH                                                                                                        | lnN | -             | -             | -             | -             | 1.05       |  |
| acceptance_ttbar                                                                                                      | lnN | 1.005         | -             | -             | -             | -          |  |
| norm_jetFakes                                                                                                         | lnN | -             | -             | -             | 1.2           | -          |  |
| xsec_diboson                                                                                                          | lnN | -             | 1.05          | -             | -             | -          |  |

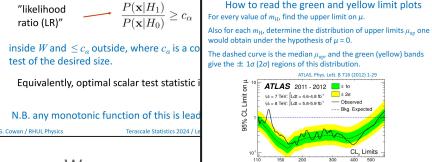
#### Systematic uncertainties

# Neyman-Pearson doesn't usually help We usually don't have explicit formulae for the pdfs f(x|s), f(x|b), so for a given x we can't evaluate the likelihood ratio $t(\mathbf{x}) = \frac{f(\mathbf{x}|s)}{f(\mathbf{x}|b)}$

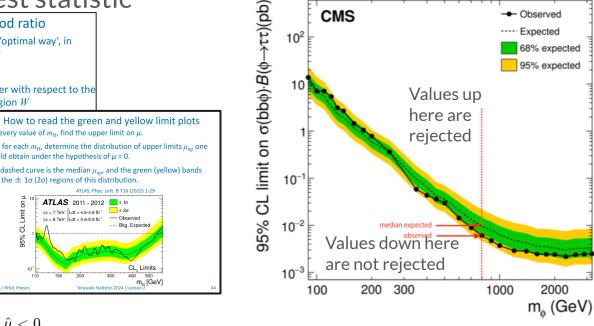


#### **Computing limits**

# Use a modified version of the


#### likelihood ratio test statistic

#### Test statistic based on likelihood ratio


How can we choose a test's critical region in an 'optimal way', in particular if the data space is multidimensional?

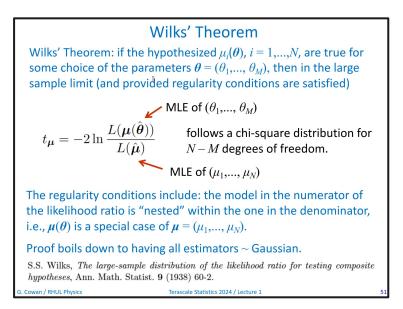
Neyman-Pearson lemma states:

For a test of  $H_0$  of size  $\alpha$ , to get the highest power with respect to the alternative  $H_1$  we need for all x in the critical region W



We use:




$$\tilde{q}_{\mu} = \begin{cases} -2\log\left(\frac{\mathcal{L}(\mu)}{\mathcal{L}(\mu=0)}\right) & \hat{\mu} < 0\\ -2\log\left(\frac{\mathcal{L}(\mu)}{\mathcal{L}(\hat{\mu})}\right) & 0 < \hat{\mu} < \mu\\ 0 & \mu < \hat{\mu} \end{cases}$$
 (And use  $CL_{s}$  criterion)

Cowan / RHUL Physics

7

35.9 fb<sup>-1</sup> (13 TeV)

# Asymptotic vs Using Toys



Under some conditions the distribution of the test statistic is known analytically:

 $\rightarrow$  Use asymptotic approximation

#### Otherwise:

Generate many sets of pseudodata to get an empirical distribution of the test statistic

#### Asymptotic Approximation

```
<<< Combine >>>
```

<<< v9.1.0 >>>

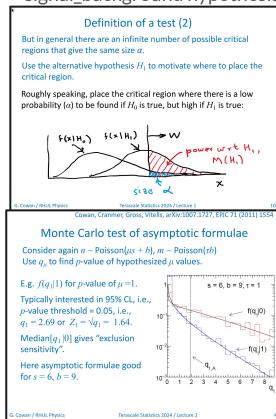
>>> Random number generator seed is 123456
>>> Method used is AsymptoticLimits

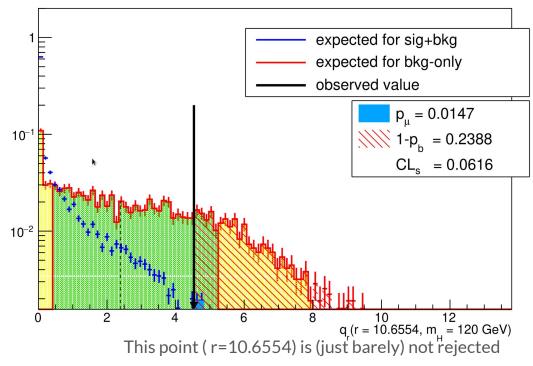
```
-- AsymptoticLimits ( CLs ) --
Observed Limit: r < 10.8183
Expected 2.5%: r < 7.0537
Expected 16.0%: r < 9.8108
Expected 50.0%: r < 14.5625
```

```
Expected 84.0%: r < 22.3988
```

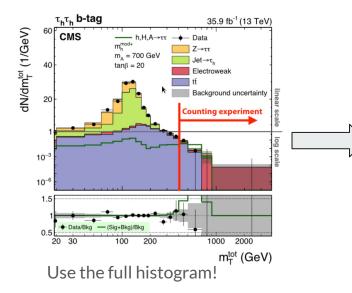
```
Expected 97.5%: r < 33.5971
```

#### **Empirical Distribution**


| Hybrid     | New     |     |          |   |     |    |
|------------|---------|-----|----------|---|-----|----|
| Limit: r < | 11.1291 | +/- | 0.163054 | 0 | 95% | CL |


#### Expected

| 2.5%  | Limit: r < 5.46875 +/- 0.15625 @ 95% CL  |
|-------|------------------------------------------|
| 16.0% | Limit: r < 10.4676 +/- 0.123997 @ 95% CL |
| 50.0% | Limit: r < 14.5396 +/- 0.136762 @ 95% CL |
| 84.0% | Limit: r < 21.7222 +/- 0.271188 @ 95% CL |
| 97.5% | Limit: r < 33.2392 +/- 1.62741 @ 95% CL  |


# **Empirical test statistic distributions**

Can directly look at the distributions of the test statistics under the background-only and signal background hypothesis





# Part 2 - Shape Experiment



|                                       |                   |                                | PROCESS \$PROCESS_\$SYSTEMATIC<br>Dot \$PROCESS\$MASS \$PROCESS\$MASS_\$SYSTEMATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------|-------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bin bin1<br>observation 8             | 5                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| bin<br>process<br>process<br>rate     | DINI              | bin1<br>background<br>1<br>100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| lumi lnN<br>bgnorm lnN<br>alpha shape | 1.10<br>1.00<br>- |                                | Histogram of background_x<br>Histogram of background_x<br>Histogram of backgroundx<br>Histogram of background (nominal)<br>- Background (+1σ alpha)<br>Histogram of background (-1σ alpha)<br>Histogram of background (-1σ alpha) |

0L

#### 

| imax 1 number of bins<br>jmax 4 number of processes minus 1<br>kmax * number of nuisance parameters                                                                                                                          |       |               |               |               |               |               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|---------------|---------------|---------------|---------------|--|
| shapes bbHtautau * datacard_part2.shapes.root signal_region/\$PROCESS\$MASS signal_region/\$PROCESS\$MASS_\$SYSTEMATIC<br>shapes * * datacard_part2.shapes.root signal_region/\$PROCESS signal_region/\$PROCESS_\$SYSTEMATIC |       |               |               |               |               |               |  |
| bin signal_region<br>observation 3416.0                                                                                                                                                                                      |       |               |               |               |               |               |  |
| bin                                                                                                                                                                                                                          |       | signal_region | signal_region | signal_region | signal_region | signal_region |  |
| process                                                                                                                                                                                                                      |       | ttbar         | diboson       | Ztautau       | jetFakes      | bbHtautau     |  |
| process                                                                                                                                                                                                                      |       | 1             | 2             | 3             | 4             | Θ             |  |
| rate                                                                                                                                                                                                                         |       | 683.017       | 96.5185       | 742.649       | 2048.94       | 0.913183      |  |
|                                                                                                                                                                                                                              |       |               |               |               |               |               |  |
| CMS_eff_b                                                                                                                                                                                                                    | lnN   | 1.02          | 1.02          | 1.02          |               | 1.02          |  |
| CMS_eff_t                                                                                                                                                                                                                    | lnN   | 1.12          | 1.12          | 1.12          |               | 1.12          |  |
| acceptance_Ztautau                                                                                                                                                                                                           | lnN   |               |               | 1.08          |               |               |  |
| acceptance_bbH                                                                                                                                                                                                               | lnN   | -             |               |               |               | 1.05          |  |
| acceptance_ttbar                                                                                                                                                                                                             | lnN   | 1.005         | -             | -             |               | -             |  |
| lumi_13TeV                                                                                                                                                                                                                   | lnN   | 1.025         | 1.025         | 1.025         | -             | 1.025         |  |
| norm_jetFakes                                                                                                                                                                                                                | lnN   |               |               | -             | 1.2           |               |  |
| xsec_Ztautau                                                                                                                                                                                                                 | lnN   |               |               | 1.04          |               |               |  |
| xsec_diboson                                                                                                                                                                                                                 | lnN   |               | 1.05          |               |               |               |  |
| xsec_ttbar                                                                                                                                                                                                                   | lnN   | 1.06          |               |               |               |               |  |
| # These ones are new                                                                                                                                                                                                         |       |               |               |               |               |               |  |
| top_pt_ttbar_shape                                                                                                                                                                                                           | shape | 1             |               |               |               |               |  |
| CMS_scale_t_1prong0pi0_13TeV                                                                                                                                                                                                 |       | 1             | 1             | 1             |               | 1             |  |
| CMS_scale_t_1prong1pi0_13TeV                                                                                                                                                                                                 |       | 1             | 1             | 1             |               | 1             |  |
| CMS_scale_t_3prong0pi0_13TeV                                                                                                                                                                                                 |       | 1             | 1             | 1             |               | 1             |  |
| CMS_eff_t_highpt                                                                                                                                                                                                             | shape | 1             | 1             | 1             |               | 1             |  |

Shape-based analysis improved limits over simple counting experiment

| Asymp    | ototicL <sup>-</sup> | imi | its | s ( CLs ) |
|----------|----------------------|-----|-----|-----------|
| Observed | Limit:               | r   | <   | 7.9771    |
| Expected | 2.5%:                | r   | <   | 4.7720    |
| Expected | 16.0%:               | r   | <   | 6.8417    |
| Expected | 50.0%:               | r   | <   | 10.5312   |
| Expected | 84.0%:               | r   | <   | 16.9959   |
| Expected | 97.5%:               | r   | <   | 26.5059   |

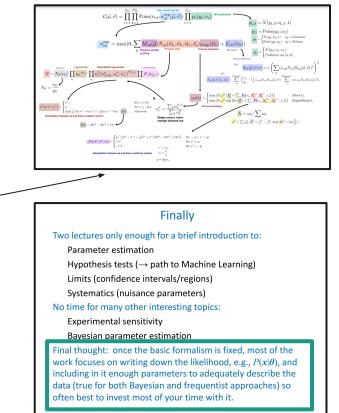
Shape-based

<<< Combine >>> <<< v9.1.0 >>> >>> Random number generator seed is 123456 >>> Method used is AsymptoticLimits

-- AsymptoticLimits ( CLs ) --Observed Limit: r < 10.8183 Expected 2.5%: r < 7.0537 Expected 16.0%: r < 9.8108 Expected 50.0%: r < 14.5625 Expected 84.0%: r < 22.3988 Expected 97.5%: r < 33.5971



## **Fit diagnostics**




We usually don't have explicit formulae for the pdfs f(x|s), f(x|b), so for a given x we can't evaluate the likelihood ratio

$$t(\mathbf{x}) = \frac{f(\mathbf{x}|s)}{f(\mathbf{x}|b)}$$

In this case we do have explicit formulas for the pdf, we constructed it with combine!

BUT we want to make sure the model we've constructed is sensible and the fits are running well!  $\rightarrow$  Inspect various aspects of your model!



Cowan / RHUL Physic

#### **Fit Parameter Values**

RooFitResult: minimized FCN value: -2.55338e-05, estimated distance to minimum: 7.54243e-06 covariance matrix quality: Full, accurate covariance matrix Status : MINIMIZE=0 HESSE=0

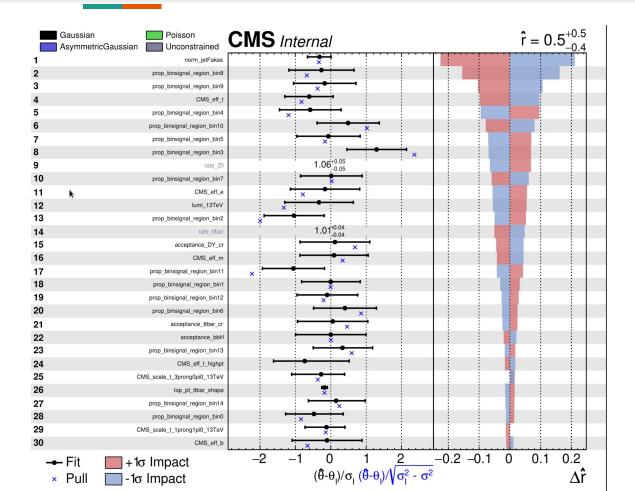
| Floating Parameter     | FinalValue +/- Error            |
|------------------------|---------------------------------|
| CMS_eff_b              | -4.5380e-02 +/- 9.93e-01        |
| CMS_eff_t              | -2.6311e-01 +/- 7.33e-01        |
| CMS_eff_t_highpt       | -4.7146e-01 +/- 9.62e-01        |
| CMS_scale_t_1prong0pi0 | _13TeV -1.5989e-01 +/- 5.93e-01 |
| CMS_scale_t_1prong1pi0 | _13TeV -1.6426e-01 +/- 4.94e-01 |
| CMS_scale_t_3prong0pi0 | _13TeV -3.0698e-01 +/- 6.06e-01 |
| acceptance_Ztautau     | -3.1262e-01 +/- 8.62e-01        |
| acceptance_bbH         | -2.8676e-05 +/- 1.00e+00        |
| acceptance_ttbar       | 4.9981e-03 +/- 1.00e+00         |
| lumi_13TeV             | -5.6366e-02 +/- 9.89e-01        |
| norm_jetFakes          | -9.3327e-02 +/- 2.56e-01        |
| r                      | -2.7220e+00 +/- 2.59e+00        |
| top_pt_ttbar_shape     | 1.7586e-01 +/- 7.00e-01         |
| xsec_Ztautau           | -1.6007e-01 +/- 9.66e-01        |
| xsec_diboson           | 3.9758e-02 +/- 1.00e+00         |
| xsec_ttbar             | 5.7794e-02 +/- 9.46e-01         |

| name                         | b-only fit     | s+b fit        | rho   |
|------------------------------|----------------|----------------|-------|
| CMS_eff_b                    | -0.04, 0.99    | -0.05, 0.99    | +0.01 |
| CMS_eff_t                    | * -0.24, 0.73* | * -0.26, 0.73* | +0.06 |
| CMS_eff_t_highpt             | * -0.56, 0.94* | * -0.47, 0.96* | +0.02 |
| CMS_scale_t_1prong0pi0_13TeV | * -0.17, 0.58* | * -0.16, 0.59* | -0.04 |
| CMS_scale_t_1prong1pi0_13TeV | ! -0.12, 0.45! | ! -0.16, 0.49! | +0.20 |
| CMS_scale_t_3prong0pi0_13TeV | * -0.31, 0.61* | * -0.31, 0.61* | +0.02 |
| acceptance_Ztautau           | * -0.31, 0.86* | * -0.31, 0.86* | -0.05 |
| acceptance_bbH               | +0.00, 1.00    | -0.00, 1.00    | +0.05 |
| acceptance_ttbar $I$         | +0.01, 1.00    | +0.00, 1.00    | +0.00 |
| lumi_13TeV                   | -0.05, 0.99    | -0.06, 0.99    | +0.01 |
| norm_jetFakes                | ! -0.09, 0.26! | ! -0.09, 0.26! | -0.05 |
| top_pt_ttbar_shape           | * +0.24, 0.69* | * +0.18, 0.70* | +0.22 |
| xsec_Ztautau                 | -0.16, 0.97    | -0.16, 0.97    | -0.02 |
| xsec_diboson                 | +0.03, 1.00    | +0.04, 1.00    | -0.02 |
| xsec_ttbar                   | +0.08, 0.95    | +0.06, 0.95    | +0.02 |
|                              |                |                |       |

Ē

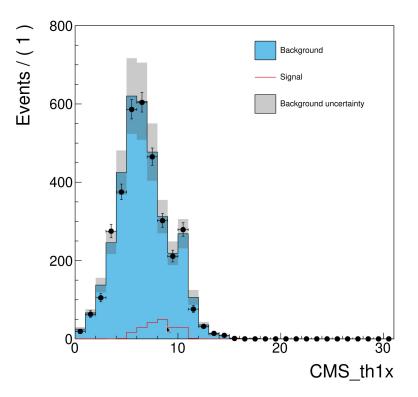


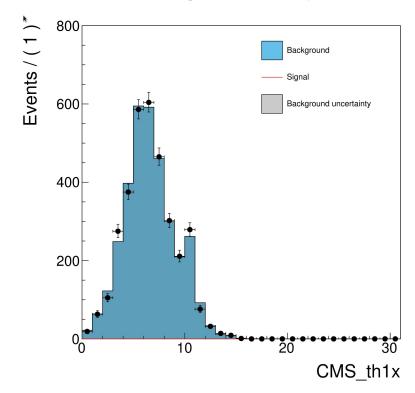
#### **Rate Parameters**


Can add rate parameters which scale certain processes

[name] rateParam [channel] [process] [init] [min,max]

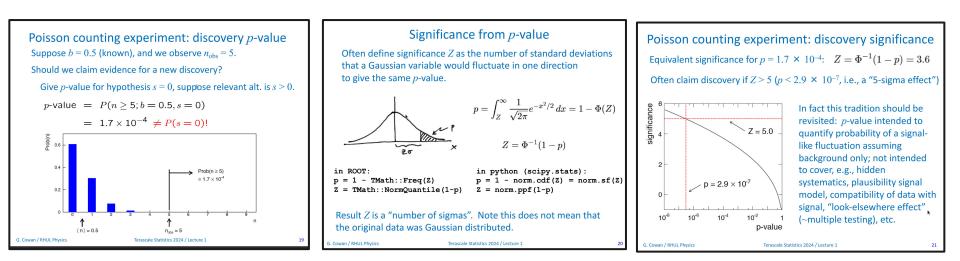
To allow the rates of the ttbar and Z->II process in the control regions to influence those in the signal region, Connect them to each other via a rate parameter


rate\_ttbar rateParam \* ttbar 1 rate\_Zll rateParam \* Ztautau 1 rate\_Zll rateParam \* Zmumu 1






# Visualizing fits


Prefit





background -only fit

## Significance



We calculate the p-value of the modified Likelihood Ratio test-statistic q<sub>0</sub> and quote a significance

$$q_0 = egin{cases} 0 & \hat{\mu} < 0 \ -2\log\left(rac{\mathcal{L}(\mu_{ ext{NP}}=0)}{\mathcal{L}(\hat{\mu}_{ ext{NP}})}
ight) & \hat{\mu} \geq 0 \end{cases}$$

# Significance

Simple Asymptotic Calculation – assume known distribution of test-statistic

<<< Combine >>>

<<< v9.1.0 >>>

- >>> Random number generator seed is 123456
- >>> Method used is Significance

-- Significance --Significance: 1.11273

Can also instruct combine to give the p-value directly with the --pvalue flag

-- Significance -p-value of background: 0.132912 Done in 0.00 min (cpu), 0.00 min (real) Asymptotic method using the large sample limit (+ some other conditions, like Wilk's theorem)

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Distribution of  $q_0$  in large-sample limit

Assuming approximations valid in the large sample (asymptotic) limit, we can write down the full distribution of  $q_0$  as

$$f(q_0|\mu') = \left(1 - \Phi\left(\frac{\mu'}{\sigma}\right)\right)\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}\exp\left[-\frac{1}{2}\left(\sqrt{q_0} - \frac{\mu'}{\sigma}\right)^2\right]$$

The special case  $\mu^{\,\prime}\,{=}\,0$  is a "half chi-square" distribution:

$$f(q_0|0) = \frac{1}{2}\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}e^{-q_0/2}$$

In large sample limit,  $f(q_0|0)$  independent of nuisance parameters;  $f(q_0|\mu')$  depends on nuisance parameters through  $\sigma$ .

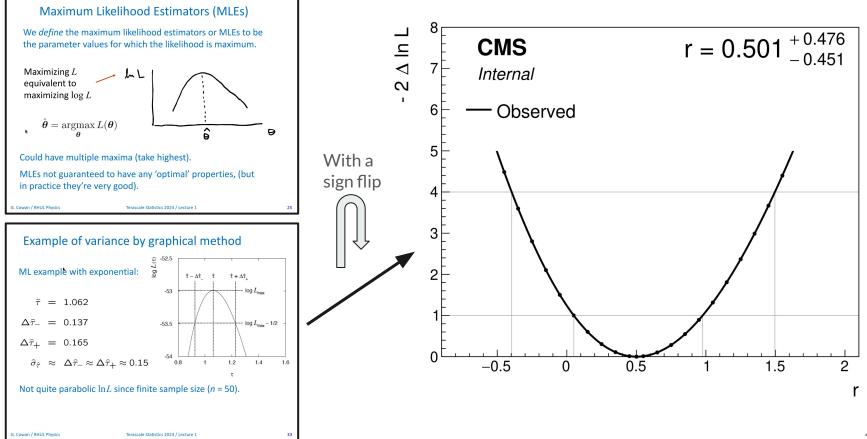
G. Cowan / RHUL Physics

Terascale Statistics 2024 / Lecture 2

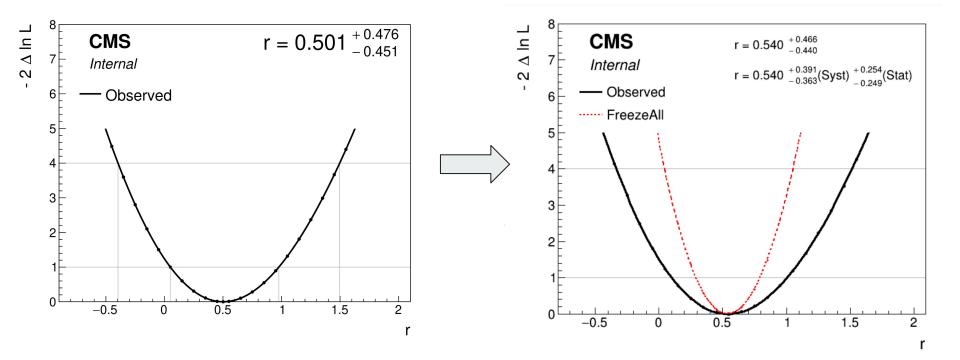
37

## Significance

Can also check expected significance for various signal strengths, e.g. with -t -1 --expectSignal 1.5

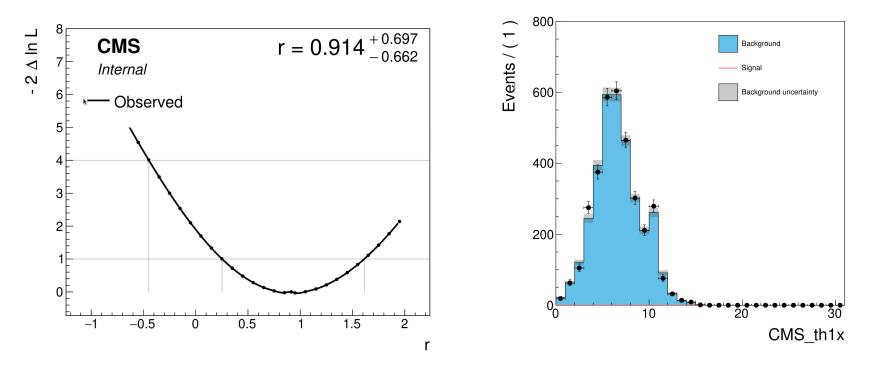

I

-- Significance --Significance: 3.52007


Can also use fit model after a first fit to the data to get model parameters with --toysFrequentist

-- Significance --Significance: 3.13954

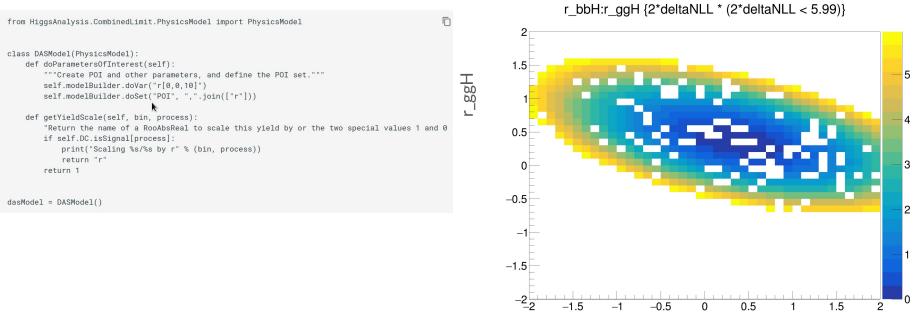
## Signal Strength measurement




### **Uncertainty Breakdowns**



#### **Channel Masks**


Can also mask particular channels to investigate the fit, e.g. masking the control regions:





### **Two Parameters of Interest**

#### 2-Dimensional NLL map



r\_bbH