in-pixel resolution studies

Daniel Pitzl, DESY CMS Pixel DPG, 30.6.2011

- Triplet residuals:
 - along module
- Lorentz drift
- Triplet residuals:
 - along pixel

pixel sensor: wide and long pixels

Module pixel map

row

Pixel triplets

- Select tracks with hits in 3 pixel layers.
- Redefine track:
 - curvature к from full tracker,
 - position and angles from hits 1 and 3.
 - analytic code from J. Gassner 1996.
- Interpolate to middle layer:
 - residual between track and hit.
 - rms = resolution.

local x resolution at low p_t

- Multiple scattering
 dominates at low p_t.
- Flat valley:
 - only silicon at midmodule.
- Peak at center:
 - wide pixels.
- Edges:
 - SiN base strips, cooling pipes.
- Well described by simulation. No phase shift when plotted in this way.

PXB1 in nuclear interactions

- Nuclear interaction vertices (M. Gouzevitch, G. Squazzoni).
- https://indico.cern.ch/co nferenceDisplay.py? confId=123717
- First pixel barrel layer with 18 cooling pipes clearly visible.

D. Pitzl (DESY): in-pixel resolution

local x resolution at low p₊

local *x* resolution at low **p**₊

D. Pitzl (DESY): in-pixel resolution

CMS Pixel DPG, 30.6.2011

local x resolution vs p_{+}

Need p_t > 4 to reach intrinsic resolution.

local *z* resolution along module

- Triplet *z* residual rms.
- All angles, $p_t > 4$ GeV.
- Peaks every 0.8 cm:
 - long pixels at ROC edges.
- MC *z* resolution is slightly too optimistic.

D. Pitzl (DESY): in-pixel resolution

zoom into pixel

- $x_{pix} = fmod(x_{loc} + 0.8, 0.01).$
- Predicted distribution is flat, as expected.
- Reconstructed position from Pixel-CPE-with-Templates:
 - peak at 97 from 1-row clusters,
 - peak at 46 µm?
 - almost flat between
 22 and 74 µm.

Lorentz drift

- $\tan \alpha_{_{\rm L}} = \mu \, B$
- pixel at 3.8 T:
 - $\tan \alpha_{\rm L} = 0.398$
- pixel sensors:
 - ► d = 285 µm
 - $\Delta x_{max} = d \tan \alpha_{L}$ = 114 µm
 - $\Delta x_{mid} = 0.5 d \tan \alpha_{L}$ $= 57 \ \mu m$

Lorentz drift

- $\tan \alpha_{_{\rm L}} = \mu B$
- pixel at 3.8 T:
 - $\tan \alpha_{\rm L} = 0.398$
- pixel sensors:
 - ► d = 285 µm
 - $\Delta x_{max} = d \tan \alpha_{L}$ = 114 µm
 - $\Delta x_{mid} = 0.5 d \tan \alpha_{L}$ = 57 µm

triplet x residuals for 1-row clusters

- Data Mar 2011
- Mean of the residual distribution is zero:
 - no bias, alignment OK.
- Width of the residual distribution at high p₊:

•
$$\sigma_r = 13 \ \mu m$$
.

► OK.

- Upgrade:
 - ROC with lower thresholds
 - less 1-row clusters.

local x resolution in pixel

- Triplet x rms as function of predicted x in pixel at high p_t.
- Strong resolution variation from 9 to 25 µm:
 - best resolution at pixel center,
 - worst resolution near pixel edges.
- Well described by the simulation.

triplet x residuals at pixel mid

- Data Mar 2011
- Width of the residual distribution at high p_t:

$$\sigma_r = 9.8 \ \mu m.$$

 $\sigma_r^2 = \sigma_2^2 + (\sigma_1/2)^2 + (\sigma_3/2)^2$

- Other layers have average $\sigma_{_i} = 10.5 \ \mu m$.
- Result:
 - $\sigma_2 = 6.4 \ \mu m$ at pixel mid.

triplet x residuals at pixel edge

- Data Mar 2011
- Width of the residual distribution at high p_t:

$$\sigma_{r} = 16.8 \ \mu m.$$

 $\sigma_{r}^{2} = \sigma_{2}^{2} + (\sigma_{1}/2)^{2} + (\sigma_{3}/2)^{2}$

- Other layers have average $\sigma_{_{\rm i}} = 10.5 \ \mu m.$
- Result:
 - $\sigma_2 = 15 \ \mu m$ at pixel edge,
 - double peak?

triplet x residuals at pixel edge

D. Pitzl (DESY): in-pixel resolution

charge sharing

• 2-row clusters:

•
$$\eta = (Q_L - Q_R) / Q_{tot}$$

- almost linear:
 - uniform charge sharing due to Lorentz drift.
- x > 90 µm:
 - only 1-row clusters.
- Perfect description by MC:
 - algorithm tuned to MC.

local x resolution in pixel

- Triplet x rms as function of predicted x in pixel at high p_t.
- Strong resolution variation from 9 to 25 µm with standard template CPE.
- Simple cluster centerof-gravity algorithm:
 - worse resolution at pixel center,
 - better resolution near pixel edges.

Summary

- Triplet method for pixel hit residuals:
 - x and z resolutions across a module well described by simulation
 - x resolution varies strongly across one pixel:
 - best resolution at pixel mid (optimal charge sharing under Lorentz drift),
 - worst resolution near pixel edges (especially for 2-row clusters).
 Improvement possible?
 - Resolution of 10.5 µm previously observed seems to be a mixture of 6.4 µm at best and 15 µm at worst.
 - quite well described by simulation.
- Upgrade:
 - new ROC with lower thresholds
 - less 1-row clusters?
 - wider plateau with optimal resolution?

D. Pitzl (DESY): in-pixel resolution

triplet resolution function

Propagation of the intrinsic resolution at high p₊:

$$\sigma_r^2 = \sigma_2^2 + \frac{\sigma_1^2}{4} + \frac{\sigma_3^2}{4} + \frac{d_{m2}^2}{L_{13}^2} (\sigma_1^2 + \sigma_3^2)$$

- $L_{13} = s_3 s_1$ length of base line
- $d_{m2} = s_2 s_m$ distance of point 2 from mid point
- $s_m = (s_1 + s_3)/2$ mid point

radial coordinate (arc length)

like for a straight line developed around its center, where offset and slope are uncorrelated.

D. Pitzl (DESY): in-pixel resolution

 \boldsymbol{S}

Fitting peaks with Student's $t = (x - x_0)/\sigma$ = normalized residual.

$$f(t) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi} \,\Gamma(\nu/2)} (1 + t^2/\nu)^{-(\nu+1)/2}$$

f(t) is a normalizedprobability density.□ function is in PAW, ROOT.

rms/σ for Student's t

Generate random numbers according to Student's t for different v (see W. Hoermann, Computing 81 (2007) 317).

- calculate rms:
 - for all t. (rms diverges for ν = 1).
 - for |t| < 5. (rms stays below 1.62 for all $\nu \ge 1$).
- Asymptotic value (rms/ $\sigma = 1$) slowly approached.

 RMS/σ