CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation

DPG Spring Meeting 2024

E. Buhmann², S. Diefenbacher³, E. Eren¹, F. Gaede¹, G. Kasieczka²,
W. Korcari², A. Korol^{1*}, K. Krüger¹, P. McKeown¹

¹ Deutsches Elektronen-Synchrotron, DESY
 ² University of Hamburg, UHH
 ³ Lawrence Berkeley National Laboratory, LBNL
 *anatolii.korol@desy.de

Introduction

Time-consuming Simulations

Goal: replace (or augment) most intensive part of detector simulation (calorimeters simulation) with a faster generator, based on state-of-the-art machine learning techniques WALL CLOCK CONSUMPTION PER WORKFLOW

Introduction Generative Models

- Generative Model is just a function that maps random noise to some structure
- In most cases the structure is an **image representation** of the electromagnetic (EM) shower in the calorimeter

- There exist numerous generative models
 - Generative Adversarial Networks (GANs)
 - Flow-based models

- Autoencoders (AE), e.g. BiB-AE
- Diffuison Models (DMs)

Image Representation of the EM Showers **ILD Detector**

Regular grid 30x30x30

One to one mapping from detector geometry to a regular grid

Problems with Image Representation of the EM Showers ILD Detector, ECAL Layers Structure

White squares represent active cells. Black lines are wafers, construction gaps, etc. (not active material)

Problems with Image Representation of the EM Showers

ILD Detector, ECAL Layers Structure

White squares represent active cells. Black lines are wafers, construction gaps, etc. (not active material)

Problems with Image Representation of the EM Showers

ILD Detector, ECAL Layers Structure, Staggering Effect

Models have to learn not only EM shower properties, but also geometry "artifacts", like staggering effect

Point Cloud Representation of the EM Showers

GEANT4 Steps

A way to overcome potential issues from irregular (realistic) cell geometry would be to use much higher granularity/resolution

- All G4 interactions, ultimate resolution
- Detached from detector layer geometry
- Too many points to generate, ~40k per shower (need pre-processing step to reduce number of spacepoints)

Photon Energy: 90 [GeV] Event: 4 Time step: 0.98246 [ns]

Point Cloud Representation of the EM Showers Data Preprocessing

Number of points reduced to $\sim 6k$ per shower, high enough resolution to move the shower in different place without harming physical properties of the shower

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, AK, et al. 2023, <u>arXiv:2305.04847</u>

CaloClouds, Model Overview

(a) Training at random time step t

(b) Sampling with reverse diffusion through all time steps ${\cal T}$

• GANs and VAEs convert noise from some simple distribution to a data sample

• DMs learn to gradually denoise data starting from noise

Reverse Diffusion Process

Point Cloud + Diffusion Model Results

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, AK, et al. 2023, <u>arXiv:2305.04847</u>

Point Cloud + Diffusion Model Results

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, AK, et al. 2023, <u>arXiv:2305.04847</u>

Per-cell energy distribution for the 50 GeV validation (left) data set, created at the same position as the training data set and for a 50 GeV test (right) data set simulated at a different position with the generated point cloud translated to this position

Results

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, AK, et al. 2023, <u>arXiv:2305.04847</u>

Hardware	Simulator	Time / Shower [ms]	Speed-up		Not impressive	
CPU	Geant4	4082 ± 170	$\times 1$	/	inference time	
	CALOCLOUDS	3509 ± 220	×1.2			
GPU	CALOCLOUDS	38 ± 3	$\times 107$			

CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, AK, et al. 2023, <u>arXiv:2309.05704</u>

Modified version of CaloClouds version + Consistency Distillation → significantly reduced inference time

Point Cloud + Diffusion Model Results

CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, AK, et al. 2023, <u>arXiv:2309.05704</u>

Point Cloud + Diffusion Model Results

CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, AK, et al. 2023, <u>arXiv:2309.05704</u>

Hardware	Simulator	NFE	Batch Size	Time / Shower [ms]	Speed-up
CPU GEANT4			3	3914.80 ± 74.09	$\times 1$
	CALOCLOUDS	100	1	3146.71 ± 31.66	×1.2
	CALOCLOUDS II	25	1	651.68 ± 4.21	$\times 6.0$
	CaloClouds II (CM)	1	1	84.35 ± 0.22	×46
GPU	CALOCLOUDS	100	64	24.91 ± 0.72	$\times 157$
	CALOCLOUDS II	25	64	6.12 ± 0.13	$\times 640$
	CALOCLOUDS II (CM)	1	64	2.09 ± 0.13	$\times 1873$

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, AK, et al. 2023, <u>arXiv:2305.04847</u> **CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation**, Buhmann, AK, et al. 2023, <u>arXiv:2309.05704</u>

- Investigated new generative model architecture for generating EM showers data
- Fidelity of the physical properties learned well, but still have to be improved to achieve better agreement with GEANT4
- The combination of **Point Clouds** representation of EM showers and **Diffusion Model** looks promising as a setup for easy integration into the simulation pipeline
- Next steps: extend functionality (e.g. angular conditioning), study full physics benchmarks

BACKUP SLIDES

Shower Flow Results

Shower Flow Results

PointWise Net

Results, Position of the Center of Gravity

Results, Visible Energy and the Number of Hits

Point Cloud Representation of the EM Showers Effects of the Pre-Clustering

DESY. | DPG Spring Meeting 2024 | Anatolii Korol

Point Cloud Representation of the EM Showers

Effects of the Pre-Clustering

x4 grid

40

0.10

-0.08

-0.06

-0.04

-0.02

0.00