
Columnar data analysis in HEP
challenges and prospects

Nikolai Hartmann

LMU Munich

February 15, PUNCHLunch

1 / 19



Columnar data analysis / Array programming

1Plot from https://coffeateam.github.io/coffea/concepts.html
2 / 19

https://coffeateam.github.io/coffea/concepts.html


Array Programming History

• Writing program logic array/column-at-a-time instead of row/event-at-a-time

• Concept exists since long before i was born (e.g. APL in the 60/70s)
→ very niche, main use nowadays probably in coding challenges

• Fortran also supports array programming, but not the main paradigm used (?)
→ https://fortran-lang.org/cs/learn/rosetta_stone

• Became mainstream probably because of
• Interactive analysis in interpreted languages (Matlab, R, Python with numpy/pandas)
• The rise of Machine learning since the 2010s (now via tensorflow, torch, jax)

• People like it!
• New students are increasingly familiar with these concepts

. . . even before i learned about this - 90% of my PhD thesis analysis used TTree::Draw
→ basically also amounts to thinking array-at-a-time

• Last step of analysis already widely done with numpy and pandas
→ e.g. many analyzers at Belle II more familiar with pandas than ROOT

3 / 19

https://fortran-lang.org/cs/learn/rosetta_stone


But Why?

Advantages

• Predefined operations, no for loops!
→ Move slow bookkeeping out of the event loop
→ Write analysis code in python instead of C++

• Run on contiguous blocks in memory
→ fast (good for CPU cache, vectorization possible)

• Advances in tools in recent years
→ data science/machine learning
→ also in HEP: uproot, awkward array, coffea

Disadvantages

• Arrays need to be loaded into memory
→ need to process chunk-wise if amount of data too large

• Some operations complex to implement
(e.g combinatorics, nested selections, variable length lists per event)

4 / 19



But for Particle Physics we want

• Objects
→ don’t want to manually operate on px, py, pz, . . .

• Variable length lists
→ each event has a list of Electrons, Muons, Jets, . . .

• Cross references
→ Electrons.trackParticles.pt should give me the right thing

. . . even if this is stored in a different column/array

• The solution: move from array of structures to structures of arrays

• Side note: translating this to storage also facilitates Interoperable and Reusable data
→ structure becomes metadata - can be described by simple standard like json
→ bulk data are just plain arrays - can be stored in a variety of standard formats

5 / 19



https://awkward-array.org

• Developed by Jim Pivarski and others (most funding from IRIS-HEP)

• Supports nested records ( RecordArray )

e.g. Events -> [Electrons -> pt, eta, phi, ..., Jets -> pt, eta, phi ...]

• Variable length lists ( ListOffsetArray )

• Cross references via indices ( IndexedArray )

• Missing values via indices or masks ( IndexedOptionArray , Byte/BitMaskedArray )

• Behavior/Dynamic quantities
e.g. Lorentz vectors - can add vectors, calculate invariant masses, . . .
→ provided by the vector package

• Everything operates on pure arrays of numbers
→ structure-of-arrays instead of array-of-structs

• ROOT files via uproot , conversion to/from ROOT.RDataFrame and cppyy possible

6 / 19

https://awkward-array.org
https://github.com/scikit-hep/vector
https://uproot.readthedocs.io/
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://cppyy.readthedocs.io/en/latest/


Escape hatch - just-in-time (JIT) compilation

• Sometimes operations may be difficult to wrap your head around (e.g. combinatorics)

• Some awkward array functions exist (e.g. ak.cartesian , ak.combinations )
• But may prefer to use loops (also for performance reasons, e.g. skipping combinations)

• JIT compilers can help, e.g. Numba
• Supports numpy
• Supports awkward array

• passing awkward arrays “just works”
• returning awkward arrays either via ArrayBuilder or flat arrays + ak.unflatten

• For existing c++ may want to manually build python wrapper, e.g. via
• pybind11
• cppyy
• ROOT

7 / 19

https://numba.pydata.org/


From columnar analysis to declarative analysis

• Columnar data analysis gets quickly transformed declarative analysis
→ removing loops, we are left with cut definitions and (high level) transformations

• Important tools
• ROOT RDataFrame
• dask-awkward

→ don’t execute operations eagerly, but build computation graph

• The dream: Completely decouple execution from the declared analysis
→ can apply optimzations (e.g. fuse operations, jit compile)
→ execute single/multithreaded, on single machine or cluster
→ maybe even move to a more database-like system (e.g. serviceX)

• I believe we are not quite there yet and a bit unclear if this is the future
→ executing the same code on many files in parallel is always an option

8 / 19

https://github.com/ssl-hep/ServiceX


Dask

https://www.dask.org

• Python framework for parallel computing

• Low-level interface via delayed and futures
→ define custom computation graphs in python

• High-level: distributed equivalents of numpy arrays and pandas DataFrames
→ distributed awkward array in development

• Live dashboard with computations/status/profiler
→ very useful for debugging and optimizing (also looks nice)

• dask-jobqueue to spawn dask cluster on top of a batch system

→ slurm, HTCondor and more supported
→ single jobs, start immediately with as many workers as you got

• ROOT RDataFrame can also use dask as a backend
→ dask as a universal interface to interactive parallelism?

9 / 19

https://www.dask.org


Some experiences with ATLAS DAOD_PHYSLITE

• DAOD_PHYSLITE : reduced ATLAS data format with (currently) 10kb per event
→ standard calibrations applied
→ readable (with caveats) without of ATLAS software stack
→ could be used to analyse with python tools and columnar data analysis

• At CMS there is some success with a similar NanoAOD format (2kb per event)

• The coffea framework provides many functionalities

→ coffea.nanoevents for representing such formats as awkward array
(including cross references, lazy loading etc)
→ developed prototype schema to support DAOD_PHYSLITE with this

10 / 19

https://coffeateam.github.io/coffea/


Represent the PHYSLITE event-data-model as an awkward array

{
    "class": "RecordArray",
    "contents": {
        "AnalysisElectrons": {
            "class": "ListOffsetArray64",
            "offsets": "i64",
            "content": {
                "class": "RecordArray",
                "contents": {
                    "pt": "float32",
                    "eta": "float32",
                    "phi": "float32",
                    "m": "float32",
                    "charge": "float32",
                    "ptvarcone30_TightTTVA_pt1000": "float32",
                    (...)
                    "trackParticles": {  }
                },
                "parameters": {
                    "__record__": "xAODParticle"
                }
            }
        }
        (...)
    }
}

                   {
                        "class": "ListArray64",
                        "starts": "i64",
                        "stops": "i64",
                        "content": {
                            "class": "IndexedArray64",
                            "index": "i64",
                            "content": {
                                "class": "RecordArray",
                                "contents": {
                                    "phi": "float32",
                                    "d0": "float32",
                                    "z0": "float32",
                                    (...)
                                },
                                "parameters": {
                                    "__record__": "xAODTrackParticle"
                                }
                            }
                        }
                    }

>>> # pt of the first track particle of each electron in events with at least one electron
>>> Events[ak.num(Events.AnalysisElectrons) >= 1].AnalysisElectrons.trackParticles.pt[:,:,0]
<Array [[2e+04], [2.13e+04, ... [1.73e+04]] type='225 * var * float32'>

11 / 19



reading ROOT TTree data with uproot

• uproot can now read basically everything we need for DAOD_PHYSLITE

• fundamental types and 1D arrays/vectors are fine
→ can with a few tricks read them as a whole block

• vector<vector<...>> requires loop

• now working reasonably efficient using awkward forth
• . . . but often buggy, e.g. uproot#951 (seen in p5631 PHYSLITE files)

12 / 19

https://github.com/scikit-hep/uproot5/issues/951


Intermezzo: why ROOT TTree is not ideal

Binary basket1data for electron pt ( vector<float> ):

“Garbage”: Header (telling us “this is a vector”) and number of bytes following (redundant)
→ green and blue marked data is the only information we actually need

1block of compressed data in ROOT TTree, typically containing data for multiple events
13 / 19



even worse for higher dimensional vectors and objects

Binary basket data for electron-track cross references ( vector<vector<ElementLink>> )

→ red and orange marked data is the only information we actually need

14 / 19



What’s better?
Loading times for all columns (≈ 1000) of 10k DAOD PHYSLITE events

Parquet seems especially promising, but all tested formats faster than Up(root)
(Note: constant overhead for Uproot, will be less significant for larger number of events)

DAOD PHYSLITE Prototypes for ROOT RNtuple exist and we expect comparable performance to
Parquet, stay tuned!

15 / 19



Challenge - Systematics

• Vision: evaluate systematic variations on the fly on PHYSLITE
→ avoid to store Nsystematics copies

• Problem: currently run during calibration (already done in PHYSLITE)
→ need to find a way to parametrize based on “nominal” calibration
→ ideally not dependent on too many variables
→ could also reduce number of needed columns

16 / 19



Systematics: The Vision

Reco format Reduced + calibrated 
analysis format

On-the-fly 
systematics 
evaluation

Systematically varied 
histograms or 
discriminants

Visualisation

Statistical analysis

1from Teng Jian Khoo’s summary at the Analysis Ecosystems Workshop
17 / 19

https://indi.to/tBhnL


Possible solution: wrap existing C++ code

tool = ElectronEfficiencyCorrectionTool()

tool.initialize()

# pass in awkward array of electrons

# get back awkward arrays of scale factors

sf, sf_total, status = tool.compute(events.Electrons)

• ATLAS has a streamlined framework for systematic corrections

• Want to avoid rewriting all that code

• But current code is too slow for on-the-fly systematics in interactive analysis

• Plan: wrap the existing C++ code into a columnar interface
→ Nils’ presentation at CHEP23
→ upcoming Poster by Matthias Vigl at ACAT24

18 / 19

https://indico.jlab.org/event/459/contributions/11583
https://indico.cern.ch/event/1330797/contributions/5796636


Summary

• Columnar analysis/Array programming greatly benefits
• Ease of use - write code in python instead of C++
• Interactive exploration, thus increasing developer productivity
• Potentially faster code (no bookkeeping in the event loop, CPU cache, simd, . . . )
• The I and R in FAIR through interoperable and reusable tools and storage formats

• Tools for HEP specific needs
• Awkward Array for numpy-like analysis with more structured data
• uproot for reading ROOT files
• RDataFrame and dask-awkward for declarative, parallelizable analysis

• ATLAS PHYSLITE is a great case study
• How to deal with more complex objects?
• How to combine columnar analysis with legacy C++ code?

19 / 19


