Columnar data analysis in HEP

challenges and prospects

Nikolai Hartmann

LMU Munich

February 15, PUNCHLunch

Columnar data analysis / Array programming

¹Plot from https://coffeateam.github.io/coffea/concepts.html

Array Programming History

life \leftarrow { $\supset 1 \omega \vee . \wedge 3 4 = +/ +/ -1 0 1 \circ . \ominus -1 0 1 \varphi^{"} \subset \omega$ }

- Writing program logic array/column-at-a-time instead of row/event-at-a-time
- Concept exists since long before i was born (e.g. APL in the 60/70s) \rightarrow very niche, main use nowadays probably in coding challenges
- Fortran also supports array programming, but not the main paradigm used (?)
 → https://fortran-lang.org/cs/learn/rosetta_stone
- · Became mainstream probably because of
 - Interactive analysis in interpreted languages (Matlab, R, Python with numpy/pandas)
 - The rise of Machine learning since the 2010s (now via tensorflow, torch, jax)
- People like it!
 - New students are increasingly familiar with these concepts
 - ... even before i learned about this 90% of my PhD thesis analysis used TTree::Draw
 - \rightarrow basically also amounts to thinking array-at-a-time
 - Last step of analysis already widely done with numpy and pandas
 - \rightarrow e.g. many analyzers at Belle II more familiar with pandas than ROOT

But Why?

Advantages

- Predefined operations, no for loops!
 - \rightarrow Move slow bookkeeping out of the event loop
 - \rightarrow Write analysis code in python instead of C++
- Run on contiguous blocks in memory
 - \rightarrow fast (good for CPU cache, vectorization possible)
- Advances in tools in recent years
 - ightarrow data science/machine learning
 - \rightarrow also in HEP: uproot, awkward array, coffea

Disadvantages

- Arrays need to be loaded into memory
 - \rightarrow need to process chunk-wise if amount of data too large
- Some operations complex to implement

(e.g combinatorics, nested selections, variable length lists per event)

But for Particle Physics we want

- Objects
 - \rightarrow don't want to manually operate on px, py, pz, \ldots
- Variable length lists
 - \rightarrow each event has a list of Electrons, Muons, Jets, \ldots
- Cross references
 - \rightarrow Electrons.trackParticles.pt should give me the right thing
 - ... even if this is stored in a different column/array
- The solution: move from array of structures to structures of arrays
- $\bullet\,$ Side note: translating this to storage also facilitates Interoperable and Reusable data
 - ightarrow structure becomes metadata can be described by simple standard like json
 - \rightarrow bulk data are just plain arrays can be stored in a variety of standard formats

https://awkward-array.org

- Developed by Jim Pivarski and others (most funding from IRIS-HEP)
- Supports nested records (RecordArray)
 - e.g. Events -> [Electrons -> pt, eta, phi, ..., Jets -> pt, eta, phi ...]
- Variable length lists (ListOffsetArray)
- Cross references via indices (IndexedArray)
- Missing values via indices or masks (IndexedOptionArray, Byte/BitMaskedArray)
- Behavior/Dynamic quantities e.g. Lorentz vectors - can add vectors, calculate invariant masses, \dots \rightarrow provided by the vector package
- Everything operates on pure arrays of numbers
 - \rightarrow structure-of-arrays instead of array-of-structs
- ROOT files via uproot , conversion to/from ROOT.RDataFrame and cppyy possible

Escape hatch - just-in-time (JIT) compilation

- Sometimes operations may be difficult to wrap your head around (e.g. combinatorics)
 - Some awkward array functions exist (e.g. ak.cartesian, ak.combinations)
 - But may prefer to use loops (also for performance reasons, e.g. skipping combinations)
- JIT compilers can help, e.g. Numba
 - Supports numpy
 - Supports awkward array
 - passing awkward arrays "just works"
 - returning awkward arrays either via ArrayBuilder or flat arrays + ak.unflatten
- For existing c++ may want to manually build python wrapper, e.g. via
 - pybind11
 - срруу
 - ROOT

From columnar analysis to declarative analysis

- Columnar data analysis gets quickly transformed declarative analysis
 → removing loops, we are left with cut definitions and (high level) transformations
- Important tools
 - ROOT RDataFrame
 - dask-awkward
 - \rightarrow don't execute operations eagerly, but build computation graph
- The dream: Completely decouple execution from the declared analysis
 - \rightarrow can apply optimzations (e.g. fuse operations, jit compile)
 - \rightarrow execute single/multithreaded, on single machine or cluster
 - \rightarrow maybe even move to a more database-like system (e.g. serviceX)
- I believe we are not quite there yet and a bit unclear if this is the future
 → executing the same code on many files in parallel is always an option

Dask

https://www.dask.org

- Python framework for parallel computing
- Low-level interface via delayed and futures
 → define custom computation graphs in python
- **High-level**: distributed equivalents of numpy arrays and pandas DataFrames → distributed awkward array in development
- Live dashboard with computations/status/profiler \rightarrow very useful for debugging and optimizing (also looks nice)
- dask-jobqueue to spawn dask cluster on top of a batch system
 - \rightarrow slurm, HTCondor and more supported
 - \rightarrow single jobs, start immediately with as many workers as you got
- ROOT RDataFrame can also use dask as a backend
 - \rightarrow dask as a universal interface to interactive parallelism?

Some experiences with ATLAS DAOD_PHYSLITE

- DAOD_PHYSLITE : reduced ATLAS data format with (currently) 10kb per event → standard calibrations applied
 - \rightarrow readable (with caveats) without of ATLAS software stack
 - \rightarrow could be used to analyse with python tools and columnar data analysis
- At CMS there is some success with a similar NanoAOD format (2kb per event)
- The coffea framework provides many functionalities
 - \rightarrow coffea.nanoevents for representing such formats as awkward array (including cross references, lazy loading etc)
 - \rightarrow developed prototype schema to support <code>DAOD_PHYSLITE</code> with this

Represent the PHYSLITE event-data-model as an awkward array

>>> # pt of the first track particle of each electron in events with at least one electron
>>> Events[ak.num(Events.AnalysisElectrons) >= 1].AnalysisElectrons.trackParticles.pt[:,:,0]
<Array [[2e+04], [2.13e+04, ... [1.73e+04]] type='225 * var * float32'>

reading ROOT TTree data with uproot

- uproot can now read basically everything we need for DAOD_PHYSLITE
- fundamental types and 1D arrays/vectors are fine \rightarrow can with a few tricks read them as a whole block
- vector<vector<...>> requires loop
 - now working reasonably efficient using awkward forth
 - ... but often buggy, e.g. uproot#951 (seen in p5631 PHYSLITE files)

Intermezzo: why ROOT TTree is not ideal

Binary basket¹data for electron pt (vector<float>):

"Garbage": Header (telling us "this is a vector") and number of bytes following (redundant) \rightarrow green and blue marked data is the only information we actually need

¹block of compressed data in ROOT TTree, typically containing data for multiple events

even worse for higher dimensional vectors and objects

Binary basket data for electron-track cross references (vector<vector<ElementLink>>)

ightarrow red and orange marked data is the only information we actually need

What's better?

Loading times for all columns (\approx 1000) of 10k DAOD PHYSLITE events

Format	Compression	Dedup. offsets	Size on disk	Execution time
(Up)root	zlib	No	117 MB	$6.0\mathrm{s}$
(Up)root (large baskets)	zlib	No	116 MB	$5.0\mathrm{s}$
Parquet	snappy	No	121 MB	$0.6\mathrm{s}$
Parquet	snappy	Yes	118 MB	$0.6\mathrm{s}$
HDF5	gzip	No	101 MB	$2.0\mathrm{s}$
HDF5	gzip	Yes	89 MB	$1.6\mathrm{s}$
HDF5	lzf	No	137 MB	$1.5\mathrm{s}$
HDF5	lzf	Yes	113 MB	$1.1\mathrm{s}$
npz	zip	No	92 MB	$2.0\mathrm{s}$
npz	zip	Yes	82 MB	$1.5\mathrm{s}$

Parquet seems especially promising, but all tested formats faster than Up(root) (Note: constant overhead for Uproot, will be less significant for larger number of events)

DAOD PHYSLITE Prototypes for **ROOT RNtuple** exist and we expect comparable performance to Parquet, stay tuned!

Challenge - Systematics

- Vision: evaluate systematic variations on the fly on PHYSLITE \rightarrow avoid to store $N_{\rm systematics}$ copies
- Problem: currently run during calibration (already done in PHYSLITE)
 - \rightarrow need to find a way to parametrize based on "nominal" calibration
 - \rightarrow ideally not dependent on too many variables
 - \rightarrow could also reduce number of needed columns

Systematics: The Vision

¹from Teng Jian Khoo's summary at the Analysis Ecosystems Workshop

Possible solution: wrap existing C++ code

```
tool = ElectronEfficiencyCorrectionTool()
tool.initialize()
# pass in awkward array of electrons
# get back awkward arrays of scale factors
sf, sf_total, status = tool.compute(events.Electrons)
```

- ATLAS has a streamlined framework for systematic corrections
- Want to avoid rewriting all that code
- · But current code is too slow for on-the-fly systematics in interactive analysis
- Plan: wrap the existing C++ code into a columnar interface
 - \rightarrow Nils' presentation at CHEP23
 - \rightarrow upcoming Poster by Matthias Vigl at ACAT24

Summary

- Columnar analysis/Array programming greatly benefits
 - Ease of use write code in python instead of C++
 - Interactive exploration, thus increasing developer productivity
 - Potentially faster code (no bookkeeping in the event loop, CPU cache, simd, ...)
 - The I and R in FAIR through interoperable and reusable tools and storage formats
- Tools for HEP specific needs
 - · Awkward Array for numpy-like analysis with more structured data
 - uproot for reading ROOT files
 - RDataFrame and dask-awkward for declarative, parallelizable analysis
- ATLAS PHYSLITE is a great case study
 - How to deal with more complex objects?
 - How to combine columnar analysis with legacy C++ code?