Columnar data analysis in HEP

challenges and prospects

Nikolai Hartmann

LMU Munich

February 15, PUNCHLunch

LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

1/19

Columnar data analysis / Array programming

S S

Ho ¢

1Plot from https://coffeateam.github.io/coffea/concepts.html

2/19

https://coffeateam.github.io/coffea/concepts.html

Array Programming History

life « (Pl wVv.A34=+/+ 1010c.06 101¢ cu}

® Writing program logic array/column-at-a-time instead of row/event-at-a-time

® Concept exists since long before i was born (e.g. APL in the 60/70s)
— very niche, main use nowadays probably in coding challenges

® Fortran also supports array programming, but not the main paradigm used (?)
— https://fortran-lang.org/cs/learn/rosetta_stone

® Became mainstream probably because of

® Interactive analysis in interpreted languages (Matlab, R, Python with numpy/pandas)
® The rise of Machine learning since the 2010s (now via tensorflow, torch, jax)

® People like it!
® New students are increasingly familiar with these concepts
. even before i learned about this - 90% of my PhD thesis analysis used TTree::Draw
— basically also amounts to thinking array-at-a-time
® | ast step of analysis already widely done with numpy and pandas
— e.g. many analyzers at Belle || more familiar with pandas than ROOT

3/19

https://fortran-lang.org/cs/learn/rosetta_stone

But Why?

Advantages

® Predefined operations, no for loops!

— Move slow bookkeeping out of the event loop

— Write analysis code in python instead of C+-+
® Run on contiguous blocks in memory

— fast (good for CPU cache, vectorization possible)
® Advances in tools in recent years

— data science/machine learning

— also in HEP: uproot, awkward array, coffea

Disadvantages

® Arrays need to be loaded into memory
— need to process chunk-wise if amount of data too large
® Some operations complex to implement
(e.g combinatorics, nested selections, variable length lists per event)

4/19

But for Particle Physics we want

Objects
— don't want to manually operate on px, py, pz, ...

Variable length lists
— each event has a list of Electrons, Muons, Jets, ...

Cross references
— Electrons.trackParticles.pt should give me the right thing

. even if this is stored in a different column/array
The solution: move from array of structures to structures of arrays

Side note: translating this to storage also facilitates Interoperable and Reusable data
— structure becomes metadata - can be described by simple standard like json
— bulk data are just plain arrays - can be stored in a variety of standard formats

5/19

Awlhward
rray

https://awkward-array.org

Developed by Jim Pivarski and others (most funding from IRIS-HEP)

Supports nested records (RecordArray)

e.g. Events -> [Electrons -> pt, eta, phi, ..., Jets -> pt, eta, phi ...]

Variable length lists (ListOffsetArray)
Cross references via indices (IndexedArray)

Missing values via indices or masks (IndexedOptionArray , Byte/BitMaskedArray)

Behavior/Dynamic quantities

e.g. Lorentz vectors - can add vectors, calculate invariant masses, ...
— provided by the vector package

Everything operates on pure arrays of numbers

— structure-of-arrays instead of array-of-structs

ROOT files via uproot , conversion to/from ROOT.RDataFrame and cppyy possible

6/19

https://awkward-array.org
https://github.com/scikit-hep/vector
https://uproot.readthedocs.io/
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://cppyy.readthedocs.io/en/latest/

Escape hatch - just-in-time (JIT) compilation

® Sometimes operations may be difficult to wrap your head around (e.g. combinatorics)

® Some awkward array functions exist (e.g. ak.cartesian , ak.combinations)
® But may prefer to use loops (also for performance reasons, e.g. skipping combinations)
® JIT compilers can help, e.g. Numba
® Supports numpy
® Supports awkward array
® passing awkward arrays “just works"
® returning awkward arrays either via ArrayBuilder or flat arrays + ak.unflatten
® For existing c++ may want to manually build python wrapper, e.g. via
® pybindll

® cppyy
°® ROOT

7/19

https://numba.pydata.org/

From columnar analysis to declarative analysis

Columnar data analysis gets quickly transformed declarative analysis
— removing loops, we are left with cut definitions and (high level) transformations

Important tools

® ROOT RDataFrame

® dask-awkward

— don't execute operations eagerly, but build computation graph

The dream: Completely decouple execution from the declared analysis
— can apply optimzations (e.g. fuse operations, jit compile)
— execute single/multithreaded, on single machine or cluster
— maybe even move to a more database-like system (e.g. serviceX)

| believe we are not quite there yet and a bit unclear if this is the future
— executing the same code on many files in parallel is always an option

8/19

https://github.com/ssl-hep/ServiceX

Dask

https://www.dask.org

Python framework for parallel computing

Low-level interface via delayed and futures

— define custom computation graphs in python

High-level: distributed equivalents of numpy arrays and pandas DataFrames
— distributed awkward array in development

Live dashboard with computations/status/profiler

— very useful for debugging and optimizing (also looks nice)

dask-jobqueue to spawn dask cluster on top of a batch system

— slurm, HTCondor and more supported

— single jobs, start immediately with as many workers as you got

ROOT RDataFrame can also use dask as a backend
— dask as a universal interface to interactive parallelism?

9/19

https://www.dask.org

Some experiences with ATLAS DAOD_PHYSLITE

® DAOD_PHYSLITE : reduced ATLAS data format with (currently) 10kb per event
— standard calibrations applied
— readable (with caveats) without of ATLAS software stack
— could be used to analyse with python tools and columnar data analysis

® At CMS there is some success with a similar NanoAOD format (2kb per event)

® The coffea framework provides many functionalities

— coffea.nanoevents for representing such formats as awkward array
(including cross references, lazy loading etc)
— developed prototype schema to support DAOD_PHYSLITE with this

10/19

https://coffeateam.github.io/coffea/

Represent the PHYSLITE event-data-model as an awkward array

{

"class": "RecordArray",
"contents": {

" i " {
AnalysisElectrons": { " w. T -
"class": "ListOffsetArray64", ,,g:srfs‘ L|s{tﬁrray64,
offset "i64", " W i
stops": "i64",
. [W "content": {
"contenés RezordArray ! “class": "IndexedArray64",
“float32" "index": "i64",
“float325 "content": {
“float32" "class": "RecordArray",
": "float32", Cﬁ"}f ot32"
"charge": "float32", "50 “ﬂoat32"'
(ptv?rcone307TlghtTTVA7pt1000 : "float32", 20" "float32",
"trackParticles": {@3} ()
w . "parameters": {
parameters xaGbParticie’ "_record_": FXAODTFaEKPaTticle"
} - - }
} }
} }
}

<Array [[2e+04], [2.13e+04,

>>> # pt of the first track particle of each electron in events with at least one electron
>>> Events[ak.num(Events.AnalysisElectrons) >= 1].AnalysisElectrons.trackParticles.pt[:,:,0]
[1.73e+04]] type='225 * var * float32'>

11/19

reading ROOT TTree data with uproot

LY -
H.ﬂn“h : VECTOR<VECTOR<ELEMENTLINK<.>>>

® uproot can now read basically everything we need for DAOD_PHYSLITE

® fundamental types and 1D arrays/vectors are fine
— can with a few tricks read them as a whole block

® vector<vector<...>> requires loop

® now working reasonably efficient using awkward forth
® ... but often buggy, e.g. uproot#951 (seen in p5631 PHYSLITE files)

12/19

https://github.com/scikit-hep/uproot5/issues/951

Intermezzo: why ROOT TTree is not ideal

Binary basket'data for electron pt (vector<float>):

:. '--I. ._l:) .-.l-.....-.‘-_--*‘."l- X -_-I':_ .:l _:: .:: j: AT
Ay Ay e AT T e e
e A F T e et Ll TR LR Ve

- 1. - —— Bu [™ o = Twigin I pell ol — L=

. .l_l‘-:- .llll.: |.I..I=|. - i A I.. I-J.._ .'-: " I-|.:.. ' .—I".l St o |
IR = il PR . e L} HE R - P > h

-.II L .:.I. 7 |] ..
|

e

“Garbage”: Header (telling us “this is a vector”) and number of bytes following (redundant)

— green and blue marked data is the only information we actually need

Tblock of compressed data in ROOT TTree, typically containing data for multiple events

13/19

even worse for higher dimensional vectors and objects

Binary basket data for electron-track cross references (vector<vector<ElementLink>>)

— red and orange marked data is the only information we actually need

14/19

What's better?
Loading times for all columns (= 1000) of 10k DAOD PHYSLITE events

Format Compression Dedup. offsets Size on disk Execution time
(Up)root zlib No 117 MB 6.0s
(Up)root (large baskets) zlib No 116 MB 5.0s
Parquet snappy No 121 MB 0.6s
Parquet snappy Yes 118 MB 0.6s
HDF5 gzip No 101 MB 2.0s
HDF5 gzip Yes 89 MB 1.6s
HDF5 Izf No 137 MB 1.5s
HDF5 Izf Yes 113 MB 1.1s
npz zip No 92 MB 2.0s
npz zip Yes 82 MB 1.5s

Parquet seems especially promising, but all tested formats faster than Up(root)
(Note: constant overhead for Uproot, will be less significant for larger number of events)

DAOD PHYSLITE Prototypes for ROOT RNtuple exist and we expect comparable performance to
Parquet, stay tuned!

15/19

Challenge - Systematics

® Vision: evaluate systematic variations on the fly on PHYSLITE
— avoid to store Ngystematics COpies

® Problem: currently run during calibration (already done in PHYSLITE)
— need to find a way to parametrize based on “nominal” calibration
— ideally not dependent on too many variables
— could also reduce number of needed columns

Centrally Have a
apply nice
calibration little format

Rerun
the calibration
to get
systematics systematics

Rerun
the calibration |

16/19

Systematics: The Vision

Reduced + calibrated

Reco format .
analysis format

On-the-fly
systematics
evaluation

Systematically varied
histograms or
discriminants

Lfrom Teng Jian Khoo's summary at the Analysis Ecosystems Workshop

Visualisation

Statistical analysis

17/19

https://indi.to/tBhnL

Possible solution: wrap existing C++ code

tool = ElectronEfficiencyCorrectionTool()
tool.initialize()

pass in awkward array of electrons
get back awkward arrays of scale factors
sf, sf_total, status = tool.compute(events.Electrons)

® ATLAS has a streamlined framework for systematic corrections
® Want to avoid rewriting all that code
® But current code is too slow for on-the-fly systematics in interactive analysis

® Plan: wrap the existing C++ code into a columnar interface
— Nils' presentation at CHEP23
— upcoming Poster by Matthias Vigl at ACAT24

18/19

https://indico.jlab.org/event/459/contributions/11583
https://indico.cern.ch/event/1330797/contributions/5796636

Summary

® Columnar analysis/Array programming greatly benefits

® Ease of use - write code in python instead of C+-+

® |nteractive exploration, thus increasing developer productivity

® Potentially faster code (no bookkeeping in the event loop, CPU cache, simd, ...)
® The | and R in FAIR through interoperable and reusable tools and storage formats

® Tools for HEP specific needs
® Awkward Array for numpy-like analysis with more structured data
® uproot for reading ROOT files
® RDataFrame and dask-awkward for declarative, parallelizable analysis

® ATLAS PHYSLITE is a great case study

® How to deal with more complex objects?
® How to combine columnar analysis with legacy C++ code?

19/19

