Single Neutron Studies without BIB

Last presentation

Summary

- High energy incident neutrons are not being reconstructed with R = 0.4 anti-kt jets as efficiently as low energy ones
- There seems to be a discrepancy between the calorimeter response between the barrel and the end cap
 - Adding a theta cutoff, the response and resolution both seem good

Next Steps

- Look at the response and resolution for the barrel and endcap calorimeters individually
- Compare anti-kt jet matching with summing up all calorimeter hits
- Look into the theta cutoff requirement

March 19, 2024 **2**

Total Calorimeter Energy Deposition

Neutron Energy Reconstruction

- Total calorimeter hit energy is significantly closer to the true neutron energy (as expected)
- Total hit energy also improves the anti-kt issue where there are almost no reconstructed neutrons with 0-5 GeV

Barrel and Endcap Jets

Jets vs Total Energy

- Definitions:
 - Total barrel energy = Σ(all ECAL + HCAL barrel hit energies)
 - Total endcap energy = Σ(all ECAL + HCAL endcap hit energies)
 - Total depo energy = Total barrel energy + total endcap energy
 - Anti-kt barrel energy = energy of jet for events where (total barrel energy / total depo energy) > 0.95
 - Anti-kt endcap energy = energy of jet for events where (total endcap energy / total depo energy) > 0.95
- The potential discrepancy between barrel and endcap calorimeter responses was seen with the anti-kt samples
 - So, my analysis separately looks at barrel and endcap jets
- Clearly, the total depo energy is closer to being accurate compared to the anti-kt jets (as is seen in later resolution/response plots)

0-250 GeV Samples

Fixing the discrepancy error

The fitting issue

- A cluster of samples outside of the main gaussian throws off the fits
 - Previously, I fixed this by ensuring 1 < theta < 2
 - However, since the cluster is apparent in both barrel and endcap jets, it cannot be caused by a discrepancy between the two
- The issue is fixed by requiring theta >= 0 (removes theta = -1)
 - This ensures that and anti-kt jet exists for this event (removes the mismatched jet problem from before)

Individual fit examples with theta >= 0 cut

March 19, 2024 6

Neutron Energy Resolution

Resolution Plots

- Split into the same categories
- Barrel jets are better at higher neutron E while endcap jets at lower neutron E
- Total depo energy response is uniformly better than the anti-kt jet approach (as expected)

Neutron Energy Response

Response Plots

- Split into the same categories
- Once again, it seems that barrel jets are better at higher initial energy and endcap jets at lower E
- Total depo energy response is again better than the anti-kt jet approach (as expected as well)
- It is interesting that both energy resolution and response for the anti-kt jets seem to be the worst around 60 GeV

Summary and Next Steps

Summary

- I found that the cluster causing fitting issues was not due to barrel vs endcap discrepancies rather it was due to mismatched jets
- Response and resolution plots show that total calorimeter energy deposition is significantly better than the anti-kt jet approach
- Barrel and endcap jets have similar performance for low initial E
 - For high E incident neutrons, however, the barrel seems to perform better

Next Steps

- Moving forwards, should I keep doing my analysis with anti-kt jets or with total calorimeter sums?
 - Should I incorporate the anti-kt jet correction or the total calorimeter sum correction?
- Create reconstruction efficiency plots with respect to E, theta
- Look at response and resolution dependence on theta as well as energy
- Add in energy response correction factor and redo analysis
- Add in more cuts (eg: remove events in the nozzle)

March 19, 2024 9