
Alignment of the CMS tracker

with Run 3 data

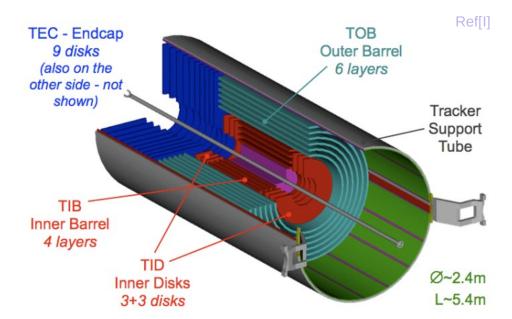
Lucia Coll Saravia on behalf of the DESY-CMS group for Tracker Alignment Karlsruhe, 04.03.2024

CMS Tracker detector

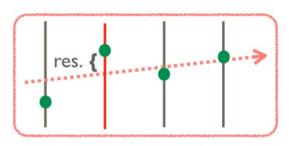
Largest silicon module tracker in the world!

Silicon tracker:

- 1856 pixel modules for phase 1
- 15148 strip modules


Goal of track based alignment:

 Find corrections to modules such that at least:

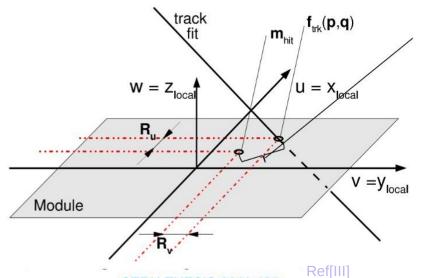

$$\sigma_{\rm align} \approx \sigma_{\rm hit}$$

- Position
- Rotation
- Curvature
- $O(10^5)$ parameters!

 pp collisions at 13.6 TeV and cosmics at 0T and 3.8T are used to minimize the differences between measured and predicted hits (residuals)

MillePede-II:

The algorithm


Goal:

- Simultaneous fit of all track and alignment parameters (correlations taken into account).
- Least-square minimization of sum of squares of normalized track-hit residuals

Minimize:

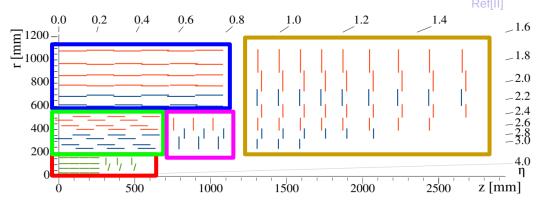
$$\chi^2(\bar{p}, \bar{q}) = \Sigma_j^{tracks} \Sigma_i^{hits} \left(\frac{m_{ij} - f_{ij}(\bar{p}, \bar{q}_j)}{\sigma_{ij}} \right)^2$$

 ${\cal P}$: alignment parameters

 $q\,$: track parameters

m : measurements

f : predictions


 $\overset{m{\sigma}}{\sigma}$: uncertainties

Challenges in alignment

Time dependence

We need continuous alignment throughout the year

Magnets switched off and on (e.g. for maintenance reasons). Impacts large mechanical structures: barrel pixel/ forward pixel, tracker outer barrel, tracker inner barrel, tracker inner disks, tracker endcaps.

Changes in the order of few mm

Year:	2016	2017	2018	2021	2022 /	2023
N (total)	8	4	4	2	2	8
On request	3	3	4	2	1	1
Fault	5	1	0	0	1	7

Large number of magnet

cycles in 2023

Challenges in alignment

Time dependence – sensor level movements

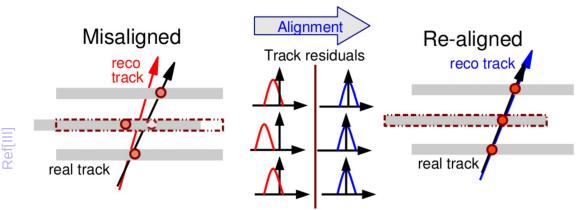
<u>Temperature variations</u>

e.g. cooling operations after long shutdown periods. (order of 0.1 mm)

- Age related factors
 - i.e. hall effect leads to Lorentz drift
 - Measured hit drifts with respect to true hit (order of a few μm but changing rapidly)
 - miscalibration due to irradiation effects can be absorbed in the alignment

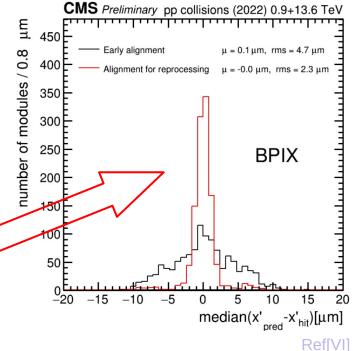
cluster Charged track K z cluster 150V X Charged track cluster 150V X true B: -3.8T (local Y) Sketch of Lorentz drift

(From N. Bartosik's thesis) Ref[∨]

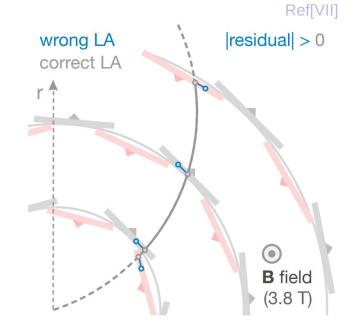

Hit determined from

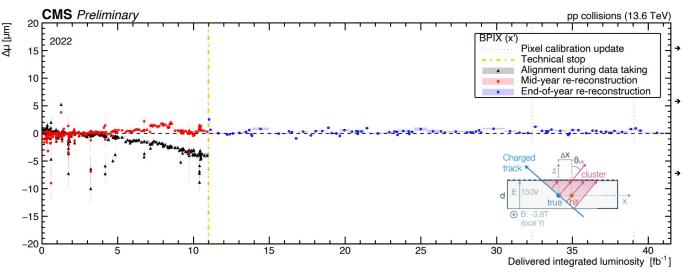
barycenter of charge

Barrel pixel detector received new innermost layer after LHC Long Shutdown 2


increased irradiation effects in beginning of Run 3 (2022).

Distributions of median residuals - DMR (2022)


Median of residuals per module in a given detector section

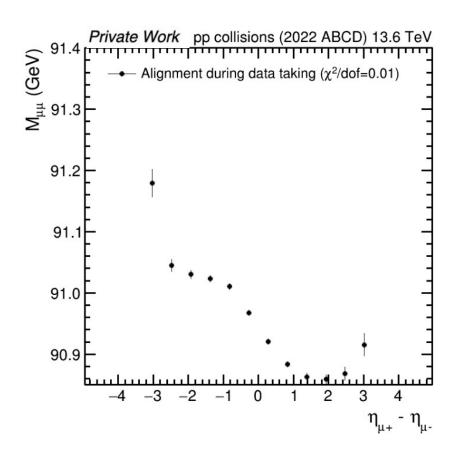

Correction of misalignment centered distribution with smaller width

Trends in distributions of median residuals (2022)

- Inward and outward-pointing modules are affected by Lorentz drift in opposite ways
 - by moving ladders and panels alignment will absorb miscalibration
- Sensitive observable: $\Delta \mu$ = difference in DMR mean between inward and outward-pointing modules

Automated (online) Low Granularity alignment (high level structures)

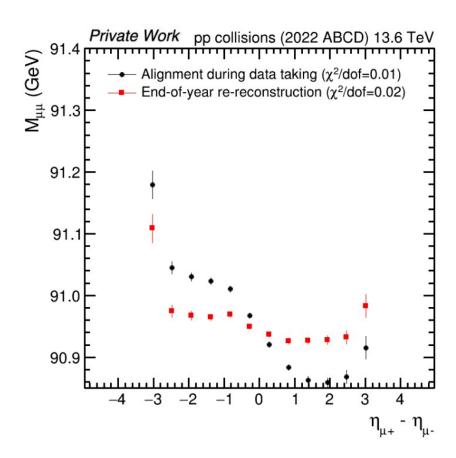
Refined offline + High Granularity automated alignment (last 2 fb^{-1} before Technical stop)


High Granularity automated alignment for remaining 30 fb^{-1} of 2022 (level of ladders and panels)

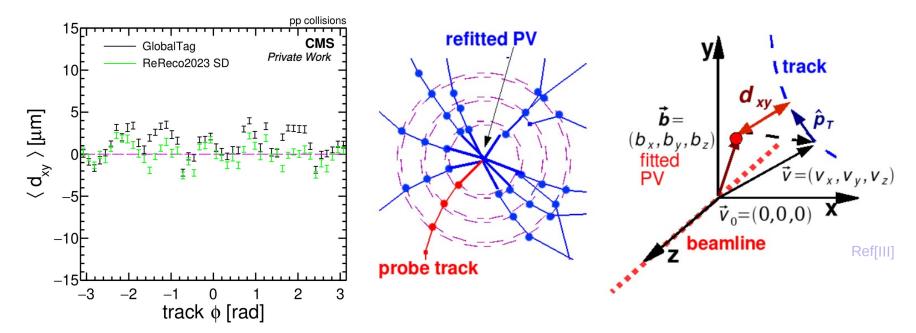
Ref[VI]

Dimuon resonance validation (2022)

Goal:

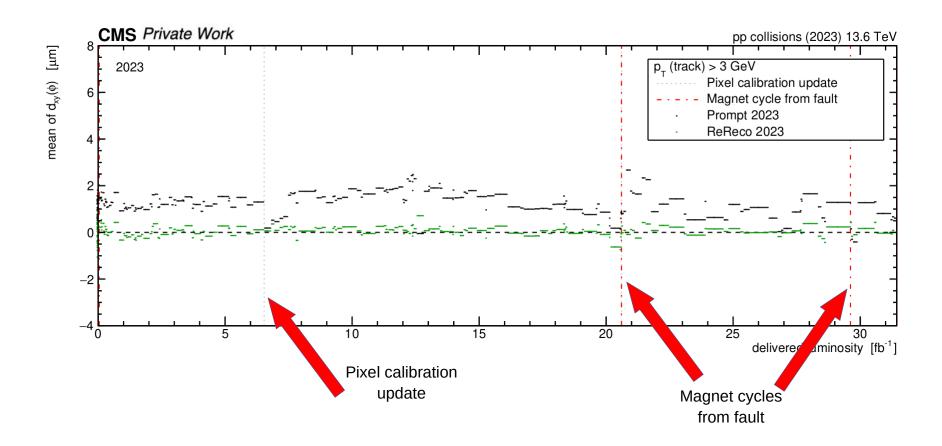

 Minimized kinematic dependence of dimuon mass on difference in pseudorapidity between positive and negative muon

Dimuon resonance validation (2022)


Goal:

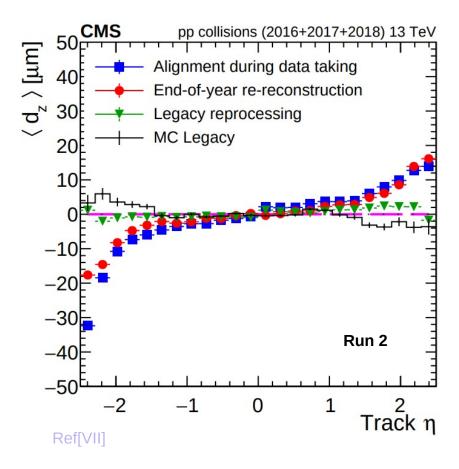
- Minimized kinematic dependence of dimuon mass on difference in pseudorapidity between positive and negative muon
- Improvement achieved by using $Z\mu\mu$ resonance date in the alignment calibrations:
 - application of mass and vertex constraints.

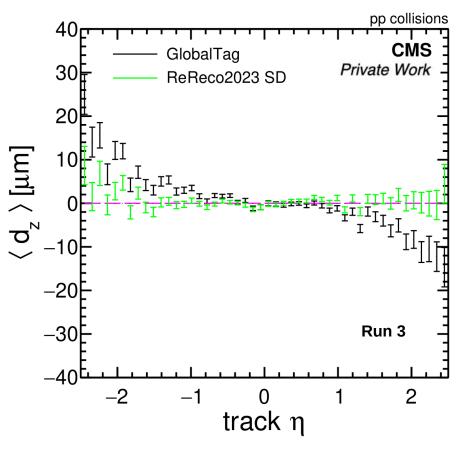
Primary vertex validation (2023)


- A probe track is removed from a primary vertex (PV) with N tracks, the PV is then refitted from the N-1 tracks
- Average transverse (d_{xy}) and longitudinal (d_z) impact parameters are calculated from the probe track to the refitted PV.
- PV validation is sensitive to random misalignment. Improvement seen below for the 2023 End-of-year re-reconstruction.

Trends in primary vertex validation

Mean of d_{xy} vs. ϕ


Significant improvement in mean transverse impact parameter mismodelling



Primary vertex validation (d_z)

Comparison of Run 2 with 2023

- Significant reduction of d_z vs η bias in 2023
- 2023 End-of-year re-reconstruction is comparable to Run 2 ultra legacy alignment

Summary

- An overview was given of track-based alignment in CMS with an emphasis on the challenges faced during active data-taking
 - → e.g. magnet cycles, temperature variations and irradiation effects
- The current status of alignment calibrations to be used for data reprocessing were shown, highlighting (for either 2022 or 2023)
 - better mean and RMS of track-hit residuals
 - compensation in the alignment procedure of the increased pixel irradiation (from newly installed innermost layer of the barrel pixel)
 - reduced kinematic dependence of the Z boson mass
 - → improved impact parameter performance
- Extensive list of first results available for 2022 in CMS-DP-2022-044
 - ongoing work on 2022 and 2023 end-of-year alignment calibrations will be finalized and summarized in a DP note later this year

Thank you

Contact

Deutsches Elektronen-Synchrotron DESY Lucia Coll Saravia

CMS

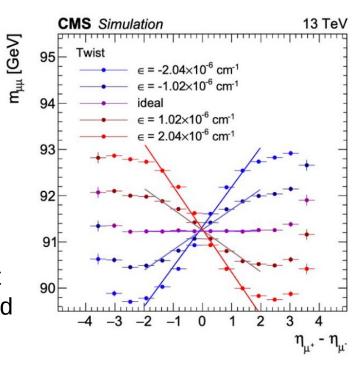
lcollsar@mail.desy.de

www.desy.de

References

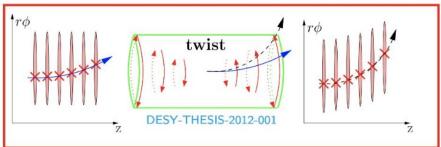
- G. Sguazzoni, The construction of the CMS Silicon Strip Tracker, INFN Sezione di Firenze (January 2008). [arXiv:0801.2468]
- II. The Phase-2 Upgrade of the CMS Tracker: CMS-TDR-014
- III. The Alignment of the CMS Tracker and its Impact on the Early Quarkonium Physics: CERN-Thesis-2011-435
- IV. V. Blobel and C. Kleinwort, A New Method for the High-Precision Alignment of Track Detectors, DESY 02-077 (June 2002). [arXiv:hep-ex/0208021v1].
- V. N. Bartosik, Associated top-quark-pair and b-jet production in the dilepton channel at 8 TeV as test of QCD and background tt+Higgs productio, UHH (July, 2015). [DOI: 10.3204/DESY-THESIS-2015-035]
- VI. Tracker Alignment Performance Twiki
- VII. The CMS Collaboration. Strategies and performance of the CMS silicon tracker alignment during LHC Run 2. [CMS-TRK-20-001].

Backup


Challenges in alignment

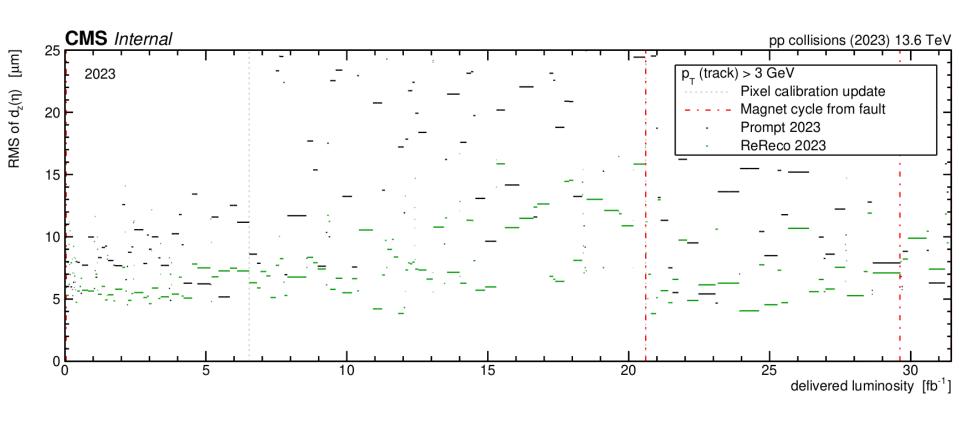
Weak modes

Non-physical geometrical transformations:


$$\Delta \chi^2 \sim 0$$

- Valid tracks turn into other valid tracks
- Key to treating weak modes is using dataset variety in alignment calibrations: cosmics and resonance data

Nine basic systematic distortions in the cylindrical system


	Δz	Δr	$\Delta \phi$
vs. z	z expansion $\Delta z = \epsilon z$ overlap	$egin{aligned} bowing \ \Delta r &= arepsilon r(z_0^2 - z^2) \ ext{overlap} \end{aligned}$	$twist \ \Delta \phi = \epsilon z \ Z o \mu \mu$
vs. r	telescope $\Delta z = \epsilon r$ cosmics	$radial$ $\Delta r = \epsilon r$ overlap	layer rotation $\Delta \phi = \epsilon r$ cosmics
vs. φ	$\Delta z = \frac{skew}{\epsilon \cos(\phi + \phi_0)}$ cosmics	$\Delta r = \epsilon r \cos(2\phi + 2\phi_0)$ $\cos mics$	$\Delta \phi = \epsilon \cos(\phi + \phi_0)$ $\cos \cos \cos \phi$

Trends in primary vertex validation

RMS of d_z vs. η

• Clear improvement in the RMS of the longitudinal impact parameter \rightarrow significant reduction of d_z vs η bias across the whole data-taking period

