DPG Spring Meeting 2024 Karlsruhe

Simulation of on- and off-shell $t\bar{t}$ production with bb41 at CMS

Simone Amoroso, Alexander Grohsjean, **Laurids Jeppe** and Christian Schwanenberger

Motivation – top mass

- The top quark mass is important for many fundamental problems
 - Vacuum stability, global EW fits...
- Most precise top mass results from direct measurements
 - Fit of MC to data for sensitive observable
 - Requires precise MC prediction
 - $\rightarrow \text{control of generator uncertainties}$

Motivation – generator uncertainties

- Relevant generator uncertainties / effects:
 - Missing higher orders in QCD / EW
 - Initial & final state radiation
 - Interference between tt/tW diagrams
 - Off-shell top effects
 - Renormalization schemes
 - Matching between matrix element and parton shower
 - e.g. recoil effects in the top decay
 - ... and much more

All of these can shift the top mass in MC!

Motivation – generator uncertainties

- Relevant generator uncertainties / effects:
 - Missing higher orders in QCD / EW
 - Initial & final state radiation
 - Interference between tt/tW diagrams
 - Off-shell top effects
 - Renormalization schemes
 - Matching between matrix element and parton shower
 - e.g. recoil effects in the top decay ← (partly addressed)

... and much more

All of these can shift the top mass in MC!

Addressed by bb41

What is bb41?

- MC generator for full process $pp \to bb\ell^+\ell^-\nu_\ell\bar{\nu_\ell}$ including all off-shell contributions at NLO, matched to a parton shower
- Implemented in the Powheg Box RES framework
- Includes NLO corrections for top decay and off-shell effects

What is bb41?

- MC generator for full process $pp o bb\ell^+\ell^-\nu_\ellar{
 u_\ell}$ including all off-shell contributions at NLO, matched to a parton shower
- Implemented in the Powheg Box RES framework
- → Full description of interference between tt and tW

Comparison to other generators

• bb41: Full NLO for tt + tW + interference including decays

Comparison to other generators

- bb41: Full NLO for tt + tW + interference including decays
- hvq (tt) and ST_wtch (tW):

S. Frixione, P. Nason, G. Ridolfi, JHEP 09 (2007) 126 E. Re, EPJC 71 (2011) 1547

- NLO in production; LO in decay with NLO ME corrections from Pythia
- Narrow-width approximation (NWA): stable tops, smeared with top width
- Ad-hoc tt/tW interference removal schemes (uncertainty): diagram removal (DR) or diagram subtraction (DS)

Comparison to other generators

- bb41: Full NLO for tt + tW + interference including decays
- hvq (tt) and ST_wtch (tW):

```
S. Frixione, P. Nason, G. Ridolfi, JHEP 09 (2007) 126
E. Re, EPJC 71 (2011) 1547
```

- NLO in production; LO in decay with NLO ME corrections from Pythia
- Narrow-width approximation (NWA): stable tops, smeared with top width
- Ad-hoc tt/tW interference removal schemes (uncertainty): diagram removal (DR) or diagram subtraction (DS)
- ttb_NLO_dec:

J. Campbell et al, JHEP 04 (2015) 114

- NLO in production and decay separately in NWA
- tt/tW interference included at LO through reweighting

Generator predictions

- CMS study of bb4l [1]
 - 20M of events per generator
 - Extension to same-flavor leptons
 - Matched to Pythia 8 with FSR veto
 - 7-point ME scale variations (μ_R and μ_F)
- Also studies by ATLAS [2] & bb41 authors [3]
- New: updated bb41 version [4]
 - Several modeling improvements
 - Lepton+jets decays \rightarrow future studies

Parameter	Value
Top quark mass	172.5 GeV
h _{damp}	1.38 m _t
μ_R and μ_F	dynamic (backup)
PDF set	NNPDF 3.1
Pythia version	8.307
Pythia tune	CP5

[1] CMS-NOTE-2023-015 [2] ATL-PHYS-PUB-2021-042 [3] S. Ferrario Ravasio et al, EPJC 78 (2018) 458 [4] T. Ježo et al, JHEP 10 (2023) 008

Results – mbl

Invariant b-l mass, chosen as

 $m_{b\ell}^{\text{minimax}} \equiv \min \left\{ \max(m_{b_1\ell_1}, m_{b_2\ell_2}), \max(m_{b_1\ell_2}, m_{b_2\ell_1}) \right\}$

- Kinematic cutoff at $\sqrt{m_t^2 m_W^2}$, tail sensitive to tt/tW interference
- Can be used to extract top width

[C. Herwig, T. Ježo, B. Nachmann, PRL 122 (2019), 231803]

- bb41 lies between the two interference handling schemes
- Agrees well with ATLAS data

[ATLAS Coll., PRL 121 (2018), 152002]

ttb_NLO_dec also close

Results – final state radiation

- FSR-sensitive observables: b fragmentation and differential b jet shape
- Both show more FSR / wider jets for bb41

Results – top mass

- Reconstruct generator-level tops
 - Dressed leptons (p_T > 20 GeV)
 + truth neutrinos → W bosons
 - AK4 b tagged jets ($p_T > 30 \text{ GeV}$)
 - $^{\mbox{\tiny $ \bullet$}}$ Assign b and W by minimal Δm_t
- Shift in top mass for bb41 compared to tt + tW!
- Also smaller shift for ttb_NLO_dec

Results – top p_T and $m_{t\bar{t}}$

Shower recoil effects

- Problem in parton showers (i.e. Pythia): emissions in decays of colored resonances change the resonance mass
 - Can lead to shifts in the observed top mass
 - Recently studied by ATLAS [1]
 - Workaround in newest Pythia (v8.310)
 - but not widely used
- bb41: first emission from the matrix element \rightarrow no recoil issues
 - Issue still present for second emission

[1] ATLAS Coll., JHEP 06 (2023) 019

Shower recoil effects

- Compare bb41 and tt+tW...
 - without the Pythia workaround [*] ("recoil to b")
 - with the workaround ("recoil to top")
- Large shift for tt+tW
- Almost no shift for bb41 (within scale uncertainties)

[*] Option recoilStrategyRF set to 1 resp. 2 in Pythia 8.310 See https://pythia.org/latest-manual/TimelikeShowers.html

Summary

- bb41 generates tt/tW at full NLO including interference and finite width effects
- Working sample produced in CMS
- Compared to hvq + ST and to ttb_NLO_dec
- Good description of ATLAS data for mbl
- Shift in top mass compared to hvq
- Not affected by shower recoil
- First step towards use of bb41 in future top mass & width measurements!

05.03.2024

Backup

Dynamic scale definition

- bb4l:
 - For resonance histories containing a top quark (tt or tW):

$$\mu_R = \mu_F = \left[\left(m_t^2 + p_{T,t}^2 \right) \left(m_{\bar{t}}^2 + p_{T,\bar{t}}^2 \right) \right]^{\frac{1}{4}}$$

(t and \bar{t} are defined in terms of their decay products)

• For resonance histories containing a neutral boson (Z,γ,H) :

$$\mu_R = \mu_F = \frac{\sqrt{p_Z^2}}{2}$$

hvq, ST_wtch and ttb_NLO_dec:

$$\mu_R = \mu_F = \sqrt{m_{\mathrm{t}}^2 + p_{T,\mathrm{t}}^2}$$
 (at Born level)

Shower matching

- bb41: up to three real emissions:1 ISR + 1 FSR per resonance
- Needs special Pythia veto to prevent double-counting of FSR

Shower matching

- bb41: up to three real emissions:1 ISR + 1 FSR per resonance
- Needs special Pythia veto to prevent double-counting of FSR
- Compare FSR veto to starting the shower at the...
 - kinematic limit ("naive" approach)
 - Hardness scale of the resonance
- Large difference to naive approach
 - → importance of matching!

Same-flavor events

bb41 only contains diagrams for opposite-flavor leptons:

not included ...but negligible for tt analysis (with Z veto)

- We extended bb41 to same-flavor events, neglecting these diagrams
 - Relabeling of final state particles
 - Can use bb41 in all-flavor analyses used for all plots shown here

Same-flavor events

Showcase: invariant lepton mass for different flavors

