DPG Spring Meeting 2024 Karlsruhe

Distinguishing axion-like particles and extended Higgs sector pseudocalars in tt final states at the LHC

Anke Biekötter¹, Thomas Biekötter², Alexander Grohsjean³, Sven Heinemeyer⁴, Laurids Jeppe⁵, Christian Schwanenberger^{3,5} and Georg Weiglein^{3,5}

¹JGU Mainz ²KIT ³Universität Hamburg ⁴IFT Madrid ⁵DESY

CLU

07.03.2024 | laurids.jeppe@desy.de

CLUSTER OF EXCELLENCE
OUANTUM UNIVERSE

Why ALPs?

- Strong CP problem: no observation of CP violation in QCD although it would be allowed from first principles
- Solved by axions BSM particles that exhibit U(1) shift symmetry
- In general: axion-like particles = particles with the same symmetry
 - Arise in many high-energy theories
 - Promising candidates for dark matter or dark matter mediators

$$\mathcal{L}_{QCD} \supset heta rac{lpha_s}{8\pi} G^a_{\mu
u} ilde{G}^{\mu
u,a}$$

CP-violating!

Obs.: $\theta < 10^{-10}$

Promote to particle: $\theta \rightarrow a$ Absorb CP-violating term in

$$\mathcal{L}_{ax} = \frac{1}{2} (\partial_{\mu} a)(\partial^{\mu} a) + c_G \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + \dots$$

03.07.2024

ALPs

- ALPs can have a large mass range!
- QCD axion is restricted to band
 - ... but that can be different in extended models
- This work: focus on large masses O(0.1 – 1 TeV)

$ALPs \rightarrow t\bar{t}$ at the LHC

- ALP couplings: photons, EW bosons, gluons, massive fermions
- Produce at the LHC via gluon fusion

considered

usual models: Yukawa-like ~ m_f

• If $m_a > 2m_t$: decay to top quarks \rightarrow interferes with SM final state:

integrated out

ALPs and additional Higgs bosons

- ALP coupling to top is similar to an additional pseudoscalar Higgs boson
 - e.g. 2HDM+a model, hMSSM, ...

AI P

+ EW bosons

top quark
$$\mathcal{L}_{ALP}=c_t \frac{\partial_{\mu}a}{f_a}(\bar{t}\gamma^{\mu}\gamma^5 t)$$
 gluons
$$+c_G \frac{a}{f_a}G^a_{\mu\nu}\tilde{G}^{\mu\nu,a} + \text{other fermions}$$

Pseudoscalar Higgs (e.g. 2HDM)

$$\mathcal{L}_A = ig_{At\bar{t}} \frac{m_t}{v} (\bar{t}\gamma^5 t) A$$
 top quark $+$ other fermions

ALPs and additional Higgs bosons

- ALP coupling to top is similar to an additional pseudoscalar Higgs boson
 - e.g. 2HDM+a model, hMSSM, ...

ALP

top quark
$$\mathcal{L}_{ALP}=c_trac{im_ta}{f_a}(ar{t}\gamma^5t)$$
 gluons $+c_{\tilde{G}}rac{a}{f_a}G^a_{\mu
u} ilde{G}^{\mu
u,a}$

+ other fermions

+ EW bosons

Pseudoscalar Higgs (e.g. 2HDM)

$$\mathcal{L}_A = ig_{Atar{t}} rac{m_t}{v} (ar{t} \gamma^5 t) A$$
 top quark $+$ other fermions

Top quark coupling can be rewritten to be identical!

Induces shift in gluon coupling Basis used in this talk

ALP vs $A \rightarrow t\bar{t}$

- Invariant tt mass distribution for ALP and pseudoscalar Higgs (A)
 - Dileptonic decay of tt
 - Truth level top quark reconstruction
 - Gaussian smearing ($\sigma = 7.5\%$) to model detector response
- For ALP with $c_G^2 = 0$: identical to Higgs

→ Translate experimental Higgs limits into ALP (assuming c_G = 0)

Search for additional Higgs bosons in tt

- CMS and ATLAS have published searches for additional Higgs bosons (including pseudoscalars) in tt [CMS arXiv:1908.01115, ATLAS arXiv:1707.06025]
- Focus here on CMS: dilepton and lepton+jets final states – see Jörns Talk
- CMS sees 3.5 σ local (1.9 σ global) excess at m_A = 400 GeV and 4% width

ALP limit for $c_G = 0$

ALPs and additional Higgs bosons

- ALP coupling to top is similar to an additional pseudoscalar Higgs boson
 - e.g. 2HDM+a model, hMSSM, ...

ALP

top quark
$$\mathcal{L}_{ALP}=c_t \frac{im_t a}{f_a}(\bar{t}\gamma^5 t)$$
 gluons $+c_{\tilde{G}} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a}$

+ other fermions

+ EW bosons

Pseudoscalar Higgs (e.g. 2HDM)

$$\mathcal{L}_A = ig_{At\bar{t}} \frac{m_t}{v} (\bar{t}\gamma^5 t) A$$
 top quark $+$ other fermions

Additional gluon coupling for the ALP! \rightarrow Effect?

ALP with $c_G^2 \neq 0$

- For $c_G^{\sim} \neq 0$, shapes in m_{tt} differ from simple pseudoscalar!
- Sensitive to relative sign of c_G and c_t:
 - For same sign: different form of "peak"
 - For opposite sign: "dip-peak" or pure "dip"
- Can we distinguish ALP and e.g. 2HDM Higgs for $c_G^{\sim} \neq 0$?

ALP with $c_G^2 \neq 0$

- Use dileptonic variables & binning from CMS: m_{tt} x c_{hel}
 - c_{hel}: cosine of angle between leptons in their helicity frames
 → sensitive to parity of signal
- Acceptance taken from the CMS 2016 result
- Expected statistical uncertainty from LHC Run 2 (138 fb⁻¹)

ALP with $c_G^2 \neq 0$

- Difference of ALP with $c_G^2 \neq 0$ and Higgs / ALP for $c_G^2 = 0$
 - Couplings chosen such that cross sections are identical
 - Still significant shape differences!
- E.g. opposite sign of c_G and c_t: z^d difference might already be observable with LHC Run 2!

03.07.2024

ALP with $\tilde{c_G} \neq 0$

Projection to higher luminosity:
 LHC Run 2 + 3 ~ 300 fb⁻¹

ALP with $\tilde{c_G} \neq 0$

Projection to higher luminosity:
 HL-LHC ~ 3 ab⁻¹

 Enough statistics expected for an explicit measurement of c_G! [≤]

Projected ALP limits

- Maximum likelihood fits to expected data similar to the CMS setup
 - Including most important modeling uncertainties
 - Only taking into account the highest chel bin
- \rightarrow Projected limits for ALPs in the c_t c_G^{\sim} plane!

Summary & Outlook

- ALPs are candidates for dark matter mediators
- Heavy ALPs can be searched for in tt final states at the LHC
- Compared ALPs to an additional pseudoscalar Higgs boson (e.g. 2HDM):
 - For ALPs with $\tilde{c_G} = 0$: identical to Higgs
 - → Translate 2016 CMS limits!
 - For ALPs with $c_G^2 \neq 0$: different m_{tt} distribution
 - → Can be distinguished!
- Projected ALP limits for the future of the LHC!

Backup

Technical details

- Generator: MadGraph 5 at LO, showered with Pythia 8
- Resonance and interference terms generated seperately
- Reconstruct top quarks at truth level
- Apply Gaussian smearing (σ = 7.5%) to model detector response in an experiment

Considered systematic uncertainties

- Systematics are implemented as nuisance parameters with shape effects in the likelihood fit
- Uncertainties on both signal and SM tt background:
 - Renormalization and factorization scales: varied by 0.5 / 2.0 independently
 - PDF: 100 replicas for the NNPDF 3.1 set
- Uncertainties on the SM tt background only:
 - Normalization: 4% uncertainty (taken from CMS)
 - Top mass: varied by 1 GeV up/down (central value 172.5 GeV)

03 07 2024