Contribution submission to the conference Karlsruhe 2024 Search for long-lived axion-like particles in top production — Juliette Alimena¹, Freya Blekman^{1,2}, Jeremi Niedziela¹, •Lovisa Rygaard^{1,2}, Susanne Westhoff^{3,5,6}, Ruth Shäfer³, and Sebastian Burgisser^{3,4} — ¹Deutsches Elektronen-Synchrotron, Hamburg, Germany — ²Universität Hamburg, Hamburg, Germany — ³Heidelberg University, Heidelberg, Germany — ⁴Uppsala University, Uppsala, Sweden — ⁵Radboud University, Nijmegen, The Netherlands — ⁶Nikhef, Amsterdam, The Netherlands We investigate the discovery potential for long-lived axion-like particles produced in association with a top quark-antiquark pair at the (High-Luminosity) LHC. Compared to inclusive searches for a displaced vertex, top quark associated signals offer new trigger options and an extra handle to suppress background. The search strategy includes axion-like particle decays to a displaced di-muon vertex which further contributes to the suppression of prompt background. For axion-like particles with masses above the di-muon threshold, we find that the (High-Luminosity) LHC can probe effective top-quark couplings as small as $|c_{tt}|/f_a = 0.03(0.002)$ TeV and proper decay lengths as long as 20 (300) m, assuming a cross section of 1 fb, with data corresponding to an integrated luminosity of 150 fb⁻¹ (3 ab⁻¹). Our predictions suggest that searches for top quark associated displaced di-muons will explore new terrain in the current sensitivity gap between searches for prompt di-muons and missing energy. In this talk I will present the results of our phenomenology study, and the first results of the CMS analysis searching for this same signature. Part: T Type: Vortrag; Talk Topic: 2.18 Suche nach neuen Teilchen; 2.18 Search for New Particles Keywords: ALP; LLP; BSM; Top Email: lovisa.rygaard@desy.de