Search for Long-Lived Axion-Like Particles in Top Production

DPG Spring Meeting March 4 2024

J. High Energ. Phys. 2023, 138 (2023)

Lovisa Rygaard, Jeremi Niedziela, Ruth Schäfer, Sebastian Bruggisser, Juliette Alimena, Susanne Westhoff, Freya Blekman

Search for Long-lived ALPs in Top Production

Outline:

Introduction

Axion-Like Particles

Top Secrets: Long-lived ALPs in Top Production

Phenomenology study of long-lived ALPs in top-antitop events at the LHC J. High Energ. Phys. 2023, 138 (2023)

- Top Scenario
- Signal and background features
- Expected sensitivity with Run 2/HL-LHC data

CMS search: Search for long-lived ALPs in top-antitop events with CMS

- Displaced dimuons
- Signal and control regions

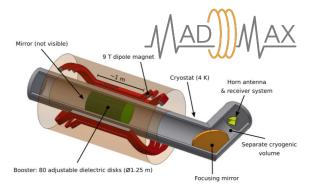
Summary and outlook

Top Secrets: Long-Lived ALPs in Top Production

Lovisa Rygaard, Jeremi Niedziela, Ruth Schäfer, Sebastian Bruggisser, Juliette Alimena, Susanne Westhoff, Freya Blekman

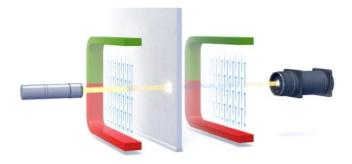
We investigate the discovery potential for long-lived particles produced in association with a top-antitop quark pair at the (High-Luminosity) LHC Compared to inclusive searches for a displaced vertex, top-associated signals offer new trigger options and an extra handle to surfue design a search strategy for a displaced di-muon vertex in the tracking detectors, in association with a reconstructive particles with masses above the di-muon threshold, we find that the (High-Luminosity) LHC can provide the current sensitivity of 150 fb⁻¹ (3 ab⁻¹). Our predictions suggest that searches for top the current sensitivity gap between searches for prompt di-muons and missing energy.

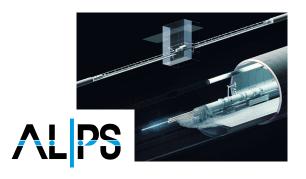
Axions


Particles introduced in the Peccei Quinn theory to solve the strong CP problem

- Low mass and low energy
- Excellent Dark Matter candidate

There are a large variety of experimental searches for axions, such as


 Haloscopes: axions from the Dark Matter halo

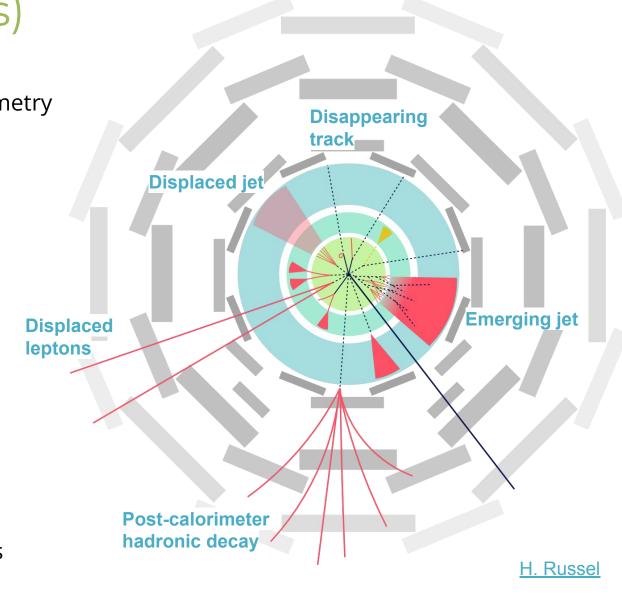


 Helioscopes: axions from the sun

 Light-shining through wall: axion-photon coupling

Axion-Like Particles (ALPs)

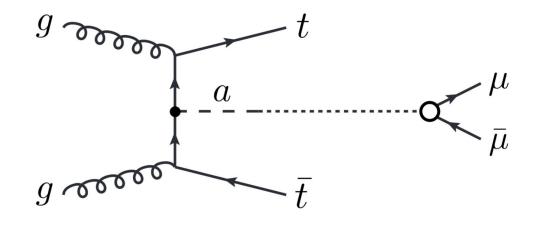
ALPs: more general class of pseudo-scalar particles

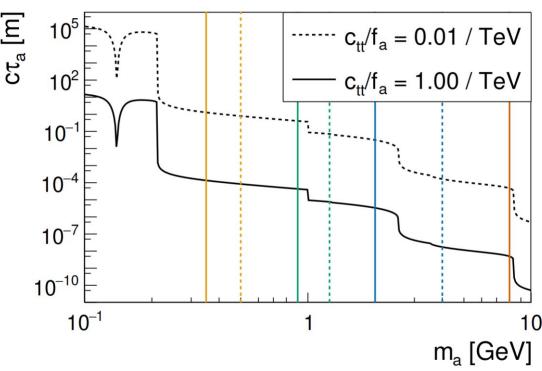

- In models with spontaneous broken global symmetry
- Mass-coupling relation not fixed
- Occur in many extensions of the SM

Experimental searches include

- haloscopes
- heliscopes
- light-shining through wall
- the Large Hadron Collider

Long-lived signatures for light, weakly coupled ALPs


Axion-Like Particles (ALPs)


Top scenario:

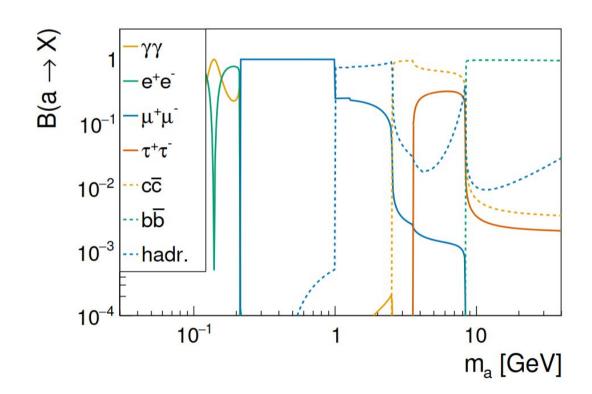
The low-energy effective theory of axions and ALPs, M.Bauer et al., <a href="https://energy.neeg

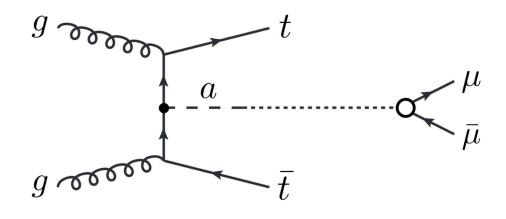
(Pseudo)-scalars are expected to have flavour-hierarchical couplings to quarks and leptons, with **the strongest coupling to top quarks**

- Assuming top coupling only
- 2 free parameters in the top scenario:
 - ALP mass m_a
 - top-ALP coupling c_{tt}
- Decays:
 - Only top loop-induced, decay width determined by c₊₊
 - For m_a < 1 GeV ALPs decay predominantly to muons
 - Long lifetimes for lighter ALPs

tt + ALPs

Searching for ALPs at the LHC


Focusing on **decays to a muon-antimuon pair**, therefore have excellent:

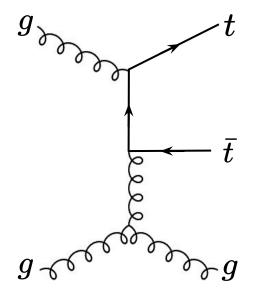

- tracking
- identification
- secondary vertex resolution

Focus on ALP masses within the range $2 \cdot m_{\mu} < m_a < 2 \cdot m_b$

In **top-antitop (tt) events:** a natural place to look for ALPs

- triggering on tops allows accessing lower masses
- improved sensitivity compared to inclusive displaced di-muon searches
- including all top decays
- assuming
 - 100% efficient top selection
 - 100% certainty of which muons come from the tops





Backgrounds

Consider two background processes for our analysis: **ttZ**(*):

- A virtual or resonant Z boson (or photon) decays/converts into a di-muon
- (Nearly) prompt muons from the Z boson

tt + jet:

- Hadrons inside the jet decay into two opposite-sign muons
- Muons from meson decays can be displaced
- Di-muons originating from the same particle (eg. J/Ψ): "resonant"
- Di-muons from decays of two different particles (e.g. 2 different mesons): "non-resonant"

Signal and background features

Event simulation

Generated samples with MadGraph5 and Pythia 8 at leading order in QCD for hard scattering processes

Event selection

We apply selection criteria in two stages:

- Pre-selection: events with a displaced di-muon
- Signal selection: suppressing background events

Pre-selection		
Muon kinematics	$p_T^\mu > 5$ GeV, $ \eta^\mu < 2.5$	
Muon displacement	$I_{ extsf{xy}} > 200\mu ext{m}$	
At least one opposite-sign di-muon		
Signal selection		
Muon kinematics	$ ho_T^\mu > 10 ext{GeV}$	
Di-muon mass	$m_{\muar{\mu}} eq m_{J/\Psi}, m_{\Psi(2S)}$	
Di-muon vertex	$R_{lxy} < 0.05$	

Muon R_{lxy}

Theory study: using generation level information without reconstructed vertices

To determine if two displaced muons originate **from the same vertex**, we define the ratio:

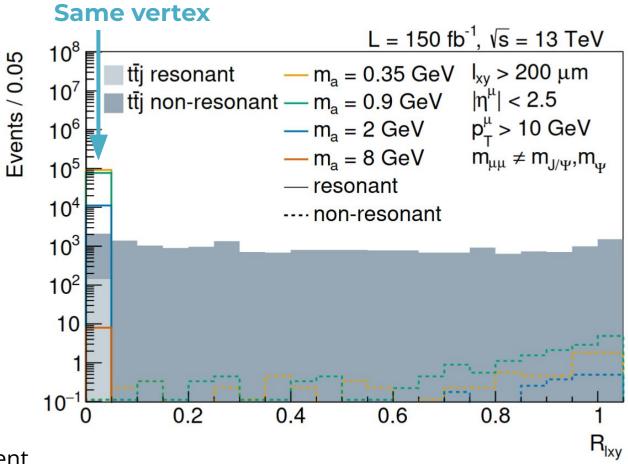
$$R_{lxy} = \frac{\sqrt{(x_{\mu} - x_{\bar{\mu}})^2 + (y_{\mu} - y_{\bar{\mu}})^2}}{\sqrt{(|x_{\mu}| + |x_{\bar{\mu}}|)^2 + (|y_{\mu}| + |y_{\bar{\mu}}|)^2}}$$

- x and y are muon vertex coordinates
- sensitive to the difference in muons' origin
- largely independent from detector resolution


Muon R_{lxy}

Theory study: using generation level information without reconstructed vertices

To determine if two displaced muons originate **from the same vertex**, we define the ratio:


$$R_{lxy} = \frac{\sqrt{(x_{\mu} - x_{\bar{\mu}})^2 + (y_{\mu} - y_{\bar{\mu}})^2}}{\sqrt{(|x_{\mu}| + |x_{\bar{\mu}}|)^2 + (|y_{\mu}| + |y_{\bar{\mu}}|)^2}}$$

- x and y are muon vertex coordinates
- sensitive to the difference in muons' origin
- largely independent from detector resolution

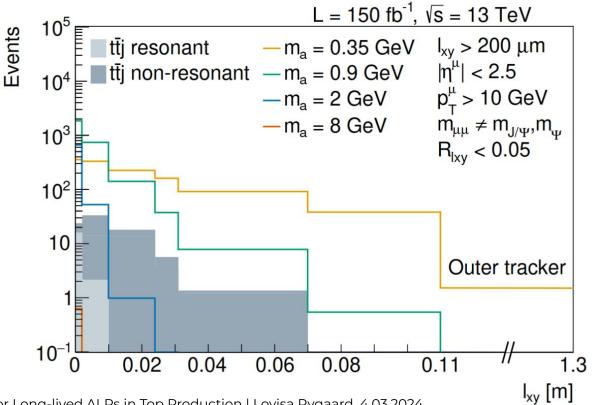
- We select the di-muon with smallest R_{lxv} in each event
- We make a conservative estimate on CMS vertex reconstruction resolution
- Applying R_{lxv} < 0.05 selection

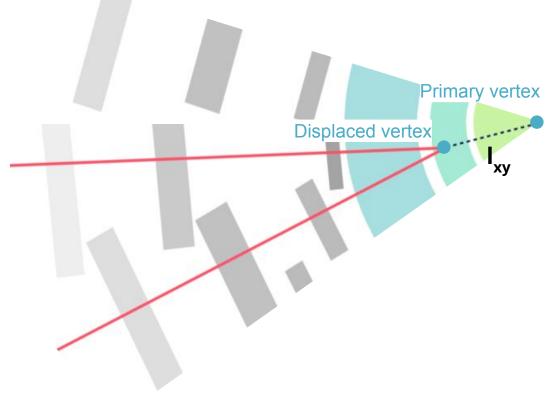
Selection efficiency

Efficiency	$m_a=0.35~{ m GeV}$	$m_a=2$ GeV	$m_a = 8 \text{ GeV}$	tīj	t₹Z ^(∗)
Pre-selection	$(8.92 \pm 0.01) \times 10^{-1}$	$(6.40 \pm 0.01) \times 10^{-1}$	$(7.25 \pm 0.03) \times 10^{-2}$	$(2.55 \pm 0.05) \times 10^{-4}$	$(1.89 \pm 0.04) \times 10^{-4}$
$p_T^\mu > 10 \; { m GeV}$	$(7.99 \pm 0.01) \times 10^{-1}$	$(5.58 \pm 0.01) \times 10^{-1}$	$(6.87 \pm 0.03) \times 10^{-2}$	$(7.4 \pm 0.2) \times 10^{-5}$	$(9.4 \pm 0.3) \times 10^{-5}$
$m_{\muar{\mu}} eq m_{J/\Psi}, m_{\Psi(2S)}$	$(7.99 \pm 0.01) \times 10^{-1}$	$(5.58 \pm 0.01) \times 10^{-1}$	$(6.86 \pm 0.03) \times 10^{-2}$	$(6.8 \pm 0.2) \times 10^{-5}$	$(5.8 \pm 0.2) \times 10^{-5}$
$R_{lxy} < 0.05$	$(7.99 \pm 0.01) \times 10^{-1}$	$(5.58 \pm 0.01) \times 10^{-1}$	$(6.86 \pm 0.03) \times 10^{-2}$	$(7.1 \pm 0.8) \times 10^{-6}$	$(4.9 \pm 0.7) \times 10^{-6}$
Events passing pre-selection	19793 ± 21	2516 ± 3	1.66 ± 0.01	15131 ± 267	0.59 ± 0.01
Events passing signal selection	17740 ± 20	2193 ± 3	1.57 ± 0.01	421 ± 45	0.015 ± 0.002

Expected number of events for LHC Run 2 (150 fb⁻¹)

- Including statistical uncertainties
- Reduces the number of background events by > 5 orders of magnitude
- High efficiency for signal, up to 80% for low masses and down to 7% for high masses (small branching ratio and more prompt)

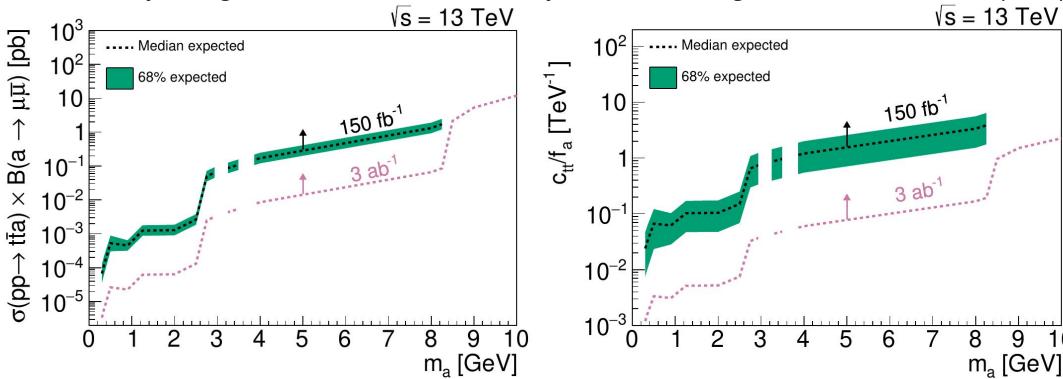

Muon displacement


I_{xy} categorization

Categorizing muon displacement in bins of I_{xy}

• Bins defined based on an existing CMS search for displaced di-muon pairs (EXO-20-014, <u>2112.13769</u>), given for the beam pipe and tracker layers

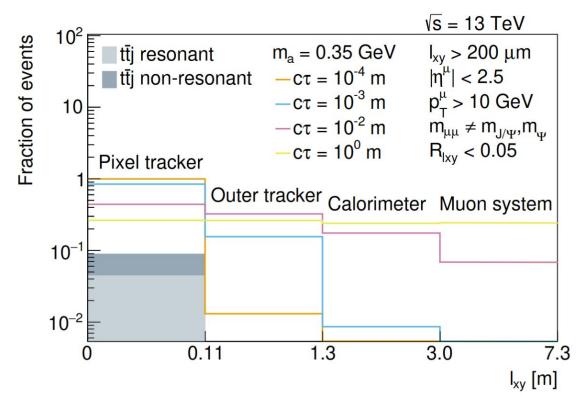
Showing I_{xv} of the least displaced muon

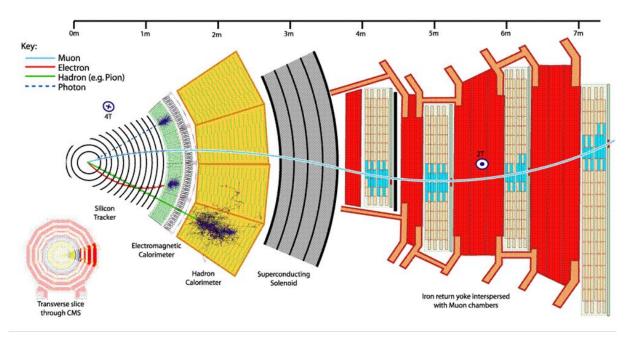

Expected sensitivity - Top scenario

Calculating 95% CL upper limits on

- cross section times branching ratio $\mathcal{B}(a\rightarrow \mu\mu)$ [left]
- top-ALP coupling c_{tt}/f_a [right]

as a function of m_a

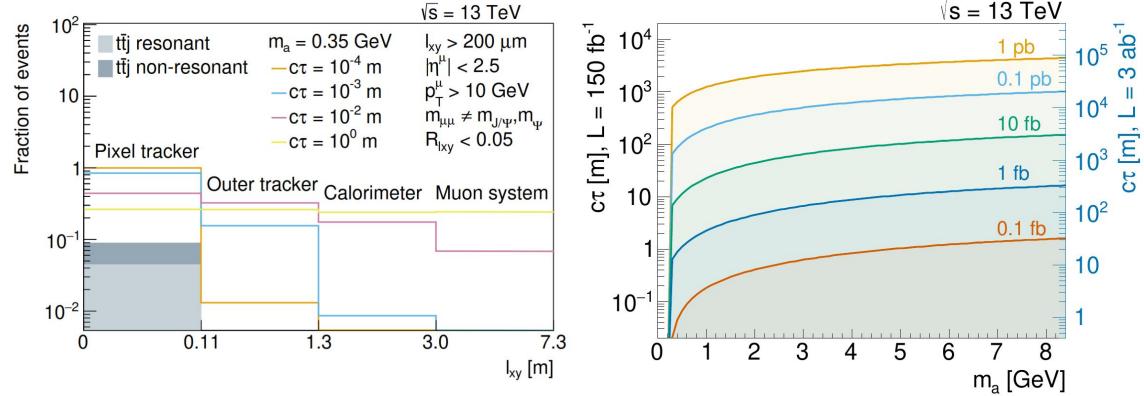

- Excellent sensitivity with Run 2 (HL-LHC) integrated luminosity of 150 fb⁻¹ (3 ab⁻¹)
- Less sensitivity for higher ALP masses as other decay channels starting to dominate (and more prompt signal)



Expected sensitivity - General scenario

General scenario: a new pseudo-scalar with arbitrary lifetime produced in tt events

• ALPs with longer lifetimes: calorimeter and muon system become more important

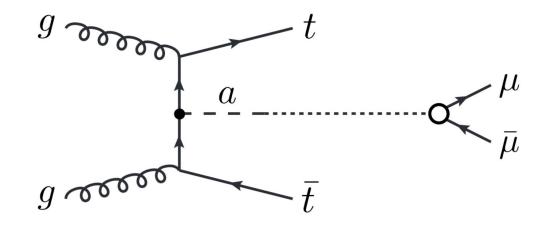

Expected sensitivity - General scenario

General scenario: a new pseudo-scalar with **arbitrary lifetime** produced in tt events

ALPs with longer lifetimes: calorimeter and muon system become more important

Expected 95% CL upper limits on the proper decay length $c\tau$ as a function of m_a for different assumptions on the signal cross section times branching ratio

• for $\sigma(t\bar{t}\to a)\times\mathcal{B}(a\to\mu\mu)=1$ fb: lifetimes up to **20** (**300**) m with **Run 2** (**HL-LHC**) data



CMS Search: Overview

Search for long-lived ALPs in tt events with CMS:

Starting with ALP decays to a **displaced di-muon**

- plan to include other decay channels in the future
- such as displaced electrons

Semi-leptonic tt decay:

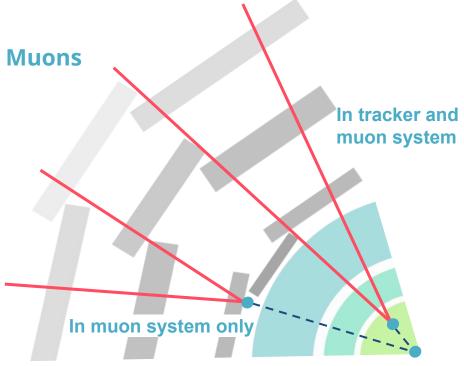
 triggering on muons/electrons from top decay allows accessing lower masses while still maintaining low background

Using full Run 2 and (2022-2023) Run 3 data

Status: CMS search started, including some of the main on-going items:

- Search strategy for displaced dimuons
- Generating samples with custom event format
- First signal-background comparisons
- Good agreement in tt control region

CMS Search: Displaced Muons


Search strategy includes different CMS muon collections

muons in both tracker and muon system

displaced muons in the muon system only = displaced standalone Muons

Matching is performed between muon collections to remove overlap

- studies of matching efficiency for common methods used in CMS
 - using angular distance between muons
 - using spatial positions between muon hits

Displaced standalone muons not included in event format used by most CMS analyses:

- → creating dedicated event format for this analysis and other long-lived CMS analyses
- first version for displaced muons, muon matching, displaced muon vertex fits
- to be available for more long-lived analyses in future versions

CMS Search: Preliminary Selections

Starting with tt decays to muon+jets:

Pre-selection:

- $p_{T}^{miss} > 50 \text{ GeV}$
- 1 muon
- 0 electrons
- ≥4 jets, ≥2 b-tags

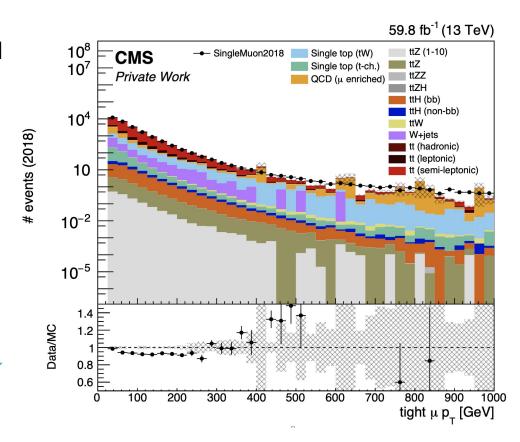
Triggers

• events with at least 1 isolated muon with $p_T > 24 \text{ GeV}$

Defining signal region

tt (muon + jets) + displaced di-muon:

Selection:


- 2 additional muons
- tt̄ (electron + jets) + displaced di-muon

Defining control regions

tt control region (muon+jets):

Selection:

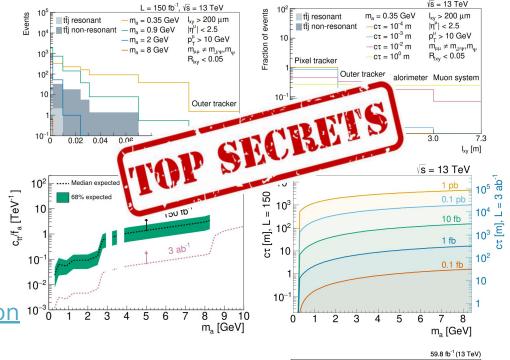
- 0 additional muons
- tt + jet, tt + prompt dimuon, tt + Z to dimuon

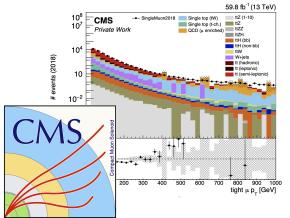
- Muon, jet and b-tagging scale factors applied
- Pileup-reweighting applied

Optimization of selections, triggers, SF still on-going

Summary and Outlook

Top Secrets: Long-lived ALPs in Top Production:


Phenomenology study of **long-lived ALPs in tt events** with decays to displaced di-muons


- Focusing on the top scenario for the top-ALP coupling c_{tt}
- Event selections are efficiently suppressing background and increase signal sensitivity
- Expected upper limits show good discovery potential for low-mass ALPs

Paper published in JHEP: Top Secrets: long-lived ALPs in top production 10-3 1 2 3

CMS Analysis started - searching for the same signature

- Search strategy with displaced di-muons
- Defining signal and control regions
- Using full Run 2 and partial Run 3 data
- New approach to increase the discovery potential of ALPs in CMS

Backup

ALPs searches at the LHC

There exist a large variety of searches for ALPs which probe different regions of phase space, couplings and lifetimes

This analysis is **complementary to existing studies**

15-72 GeV, ATLAS arxiv:2304.14247

0.2-3 GeV, LHCb JHEP 10(2020)156

0.3-5 GeV, LHCb <u>PRD 95.071101</u>, B decays

0.5 - 4 GeV ATLAS <u>PRL 125.221802</u>, H/Z production 5.5-15 GeV, LHCb JHEP09(2018)147

4-15 GeV, CMS <u>PLB 2019.135087</u>, H decays

3.6-21 GeV, CMS <u>JHEP08(2020)139</u>, H decays

15-30 GeV, ATLAS <u>PRD 102.112006</u>, H decays

16-62 GeV, ATLAS <u>CONF-2021-009</u>, H decays

20-62 GeV, CMS PLB 2019.06.021, H decays

6-100 GeV, ATLAS <u>JHEP03(2021)243</u>, UPC HI

5-90 GeV, CMS PLB 2019.134826, UPC HI

350-1600 GeV, CMS+TOTEM EXO-18-014

top coupling

ℓ coupling

 γ coupling

q coupling (not top)

top + missing energy

Pheno study

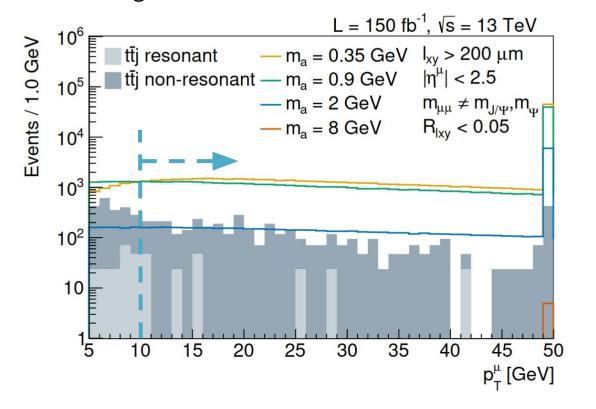
single-top + missing energy: 10-1000 GeV PRD 96.3 035031, 500-5000 GeV ATLAS JHEP05(2019)041, 0-1000 GeVATLAS EPJC75(2015)79

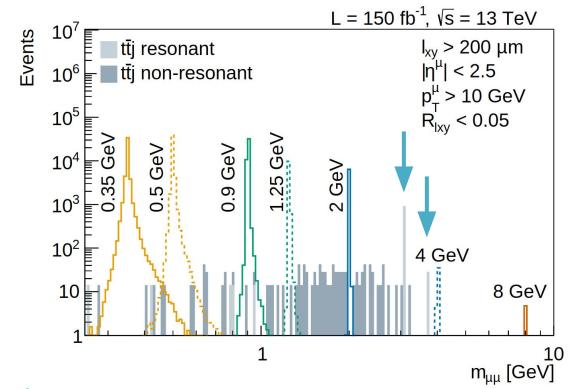
tt + missing energy: 10-500 GeV <u>JHEP 02(2017)131</u>, < 200 GeV <u>arXiv:2303.17634</u>, 10-500 GeV <u>PRD 98.1 015012</u>, 100 GeV CMS <u>JHEP06(2015)121</u>, 10-500 GeV CMS <u>EPJC77.845</u>, 10-500 GeV CMS <u>JHEP03(2019)141</u>, 10-300 GeV CMS <u>PRL122.011803</u>, 5-3000 GeV ATLAS EPJC 75(2015)92

Top Secrets

2-10 GeV, JHEP 07(2022)122, Hadronic decays

0.2-4.4 GeV, LHCb PRL 115, 161802, B decays

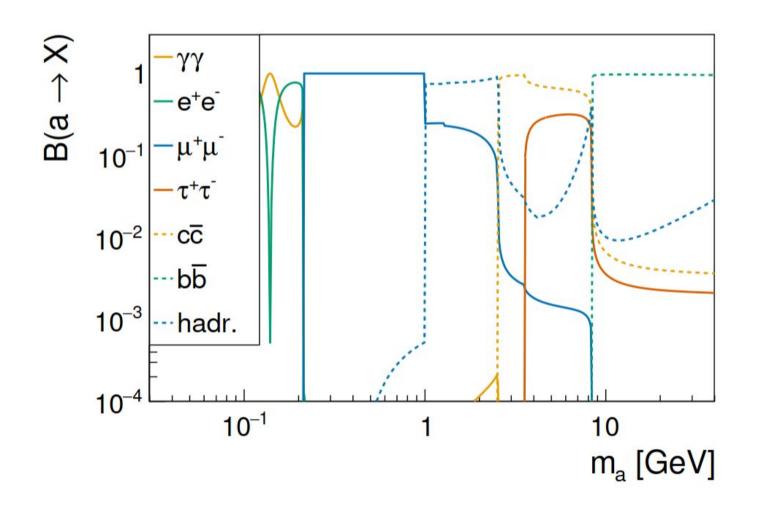

0.3-5 GeV, CMS JHEP04(2022)062, Scouting


→ m

Signal Selection

Muon transverse momentum

- Signal p_T tends to be harder than for the background
- Applying p_T > 10 GeV selection to remove low p_T background

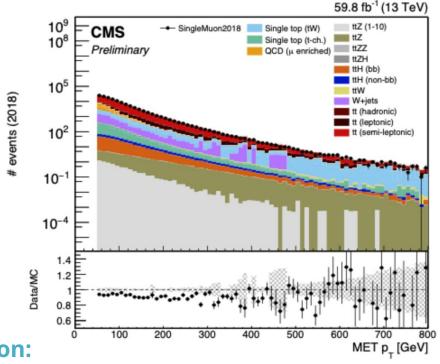

Di-muon resonances

Suppressing know SM resonances by explicit m_{uu} cuts

- Displacement cuts already reduces background resonances
- Excluding di-muon masses within 5% above and below the J/Ψ and Ψ(2S) meson masses

ALP branching ratios

Branching ratios of ALPs as a function of m_a



CMS Search: Object Descriptions

tt (muon+jet) control region:

Event Selection:

- $p_T^{miss} > 50 \text{ GeV}$
- Exactly 1 tight muon
- 0 additional loose muons,
- 0 loose electrons
- ≥4 good jets, ≥2 good b-tags

tt (muon+jet) + dimuon signal region:

Event Selection:

- $p_T^{miss} > 50 \text{ GeV}$
- Exactly 1 tight muon
- 2 additional loose muons or loose DSA muons
- 0 loose electrons
- ≥4 good jets, ≥2 good b-tags

loose DSA muons are considered if not matched to loose muons

Tight Muon

- tightId
- ≥PFIsoTight
- pT > 30 GeV, $|\eta|$ < 2.4

Loose Muon

- looseld
- PFIsoVeryLoose
- pT > 15 (5) GeV for CR (SR)
- $|\eta| < 2.5$

Loose DSA Muon

- displacedID
- pT > 5 GeV, $|\eta|$ < 2.5

Loose Electron

- mvaFall17V2Iso WPL
- pT > 15 GeV, $|\eta|$ < 2.5

Good (b-)Jets

- · tightLepVeto
- btagDeepFlavB > 0.2783
- pT > 30 GeV, $|\eta|$ < 2.4

CMS Search: LLPnanoAOD v.1

LLPnanoAOD v.1 content with displaced muons

Dedicated CMS data format for long-lived analyses

LLPnanoAOD v.1 collection	Description	
DSAMuon	 displacedStandAloneMuons from MiniAOD/AOD Including default values for RECO::track Including custom variables for displacement Including custom variables for DSAMuon ID Including Segment/Hit matching to Muon collection Including indexing logic for matching and MuonVertex 	
Muon	 Extension of existing Muon collection Including custom variables for displacement Including Segment/Hit matching to Muon collection Including indexing logic for matching and MuonVertex 	
MuonVertex	Fitted muon vertices in 3 combinations: • Muon-Muon • Muon-DSAMuon • DSAMuon-DSAMuon Including displaced Tracker Isolation for each di-muon combination	
BeamSpot	Including the default NanoAOD vertex variables	
GenPart	Extension of existing GenPart collection • Including vx, vy, vz variables	