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dSiPM design overview



The concept of a digital SiPM

Implementing avalanche photodiodes on a CMOS ASIC

/Silicon photomultipliers (SiPMs),

high internal gain

single-photon detection capability
« no external amplification required
O(10 ps) timing resolution

Light‘ Metal contact Quenching resistor

Ivlzu Single MPPC pixel

~

made of single-photon avalanche diodes (SPADs):

/CMOS ASICs as particle detectors:
. large analog and digital component libraries
— SPADs are also available
— in-pixel hit discrimination
— full pixel matrix readout
— on-chip data preprocessing
« monolithic design
— low material budget
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DESY digital SIPM prototype

Designed in 150 nm LFoundry CMOS process

« 32X32 pixels

« 70 um pixel pitch

* Four parallel 20X20 um SPADs in each pixel

* Frame-based readout

* Full binary hitmaps

» Pixel masking (incl. disabling bias)

* Frame timestamping, defined by the first pixel to fire
» 12-bit TDC with bin size of ~77 ps

» On-chip cluster topology discrimination

~2 mm
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See |. Diehl et al 2024 JINST 19 P071020 and T 92.4 by Gianpiero!
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https://iopscience.iop.org/article/10.1088/1748-0221/19/01/P01020

How timing works on the chip

Timestamping mechanism and quadrants

« Each pixel is connected to quadrant’s time-to-digital converter (TDC)

(located on the periphery of each quadrant, 4 total)
« First pixel to fire in each frame in each quadrant triggers its respective TDC

« Thus, up to 4 timestamps are set for each frame (1 for each quadrant)

-

-

Timestamp
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Frame number
333 ns
3 MHz frame clock
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Coarse timestamp
245 ns
within a frame,

7 bits @ 408 MHz chip clock

N
Fine timestamp
77 ps

O\

+ | within a chip clock cycle,
(dedicated 5-bit TDC)

\

J

/

manufacturing variation:

real bin size = ~95 ps

full counter depth never reached
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Timing measurements
with a picosecond laser



Laserbox

and how to measure

timing response with it ? _ L
U\ . y § 4% PilLas 672 nm injection laser
. pulse duration ~ 50 ps
trigger jitter < 5 ps
spot size ~ 10 um

Pulsed lasers T .' 7‘1 %A Control board
are great for charge injection: 1 I low-level
« micrometer aim precision B \ g T chip interfaces
- trigger when you want ' ‘ ™ h w4
* high repetition rate
* tunable intensity

Measurement scheme:
« caribou DAQ+control [1]
» laser trigger pulses in sync

with readout frames /2 '3 ‘
« measured ToA should always : TS WA B Motorized stages
be the same /] SoC +FPGA AN S (0 aim and focus
4 the laser

— TOA uncertainty defines

data handli
timing resolution of the DUT 2 handing

[1] PoS TWEPP2019 (2020) 100
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https://pos.sissa.it/370/100

Matrix delay map

Propagation delay, [fTDC units] Propagation delay RMS, [fTDC units]
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Measurement scheme:
1. Trigger the laser synchronously with dSiPM frame clock
2. Unmask just a single pixel — hits to define timestamps are coming only from this pixel
3. Aim the laser at that pixel (high intensity, defocused)
4. Record timestamp distributions
» Scan across all pixels in the matrix
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Matrix delay map

Propagation delay, [fTDC units] Propagation delay RMS, [fTDC units]
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» Additional delay for pixels in the matrix centre, as signals need to propagate to the periphery
« This delay can be quantified with a grain of exactly 1 TDC bin
» Higher uncertainty at the transition between TDC bins

» Results are used as an lookup table to compensate for propagation delay €.g. in the testbeam
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In-pixel timing (1)

A story of peculiar things in the test beam results

Test-beam campaign @ DESY II:
chip characterization via direct m.i.p. detection

Finding:
for a fraction of events, significantly slower response is
observed (few ns, whereas sub-100 ps expected)

Finding:
these slow events occur when a particle track crosses
the chip at a SPAD edge

Hypothesis:
this effect is caused by the actual sensor physics,
namely, avalanches being preceded by drift

See T 92.3 by Stephan!

In-pixel hitmaps, correlated events
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Pixel layout —

The measurements leading to these results have been performed at the Test Beam Facility
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Position-sensitive laser characterization

Sensitivity scan

Normalized counts in pixel

Measurement scheme:
1. Tune optics: optimize the spot size and avoid charge
injection not in the spot

« ~10 um spot size
 attenuation with ND filters
2. Trigger the laser synchronously with dSiPM frame clock

3. Mask all the matrix but a single pixel — timestamps only
come from the studied pixel
4. Record timestamp distributions
« Scan across a pixel with the laser position
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In-pixel laser pos y, [um]
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In-pixel laser pos x, [um]

In-pixel hitmap
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Position-sensitive laser characterization

Sensitivity scan

Normalized counts in pixel

Measurement scheme:
1. Tune optics: optimize the spot size and avoid charge
injection not in the spot

« ~10 um spot size
« attenuation with ND filters
2. Trigger the laser synchronously with dSiPM frame clock

3. Mask all the matrix but a single pixel — timestamps only
come from the studied pixel
4. Record timestamp distributions
- Scan across a pixel with the laser position

-0.8

In-pixel laser pos y, [um]

e

10

S l
In-pixel laser pos x, [um]

In-pixel hitmap,
overlaid with a pixel photograph
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In-pixel timing (2)

Time residual structure

Timestamp distribution Timestamp distribution, zoom-in
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In-pixel timing (3)

SPAD center / SPAD edge variations

Spatial cut
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Spatial cut
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In-pixel timing (3)
SPAD center / SPAD edge variations

Where we at
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In-pi
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In-pixel laser pos y, [um]

In-pixel timing (4)

ToA fit results

Per-point fits for this region —

Note: data from regions outside SPADs are irrelevant due to insensitivity / low statistics
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» Stable performance in the SPAD centres — instant fast (~50 ps) avalanches

» Fraction of slower (~ns) events — charges drifting to the avalanche region
« Becomes more significant when the laser is aimed at a SPAD edge
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Conclusions

Timing performance of a novel dSiPM prototype studied

with a fast injection laser T h a n k yO u !

* Propagation delay in trigger lines is characterized ) !
across the chip matrix Discussion?
« This delay can be compensated for
* In-pixel timing performance is characterized
. ~50 ps timing resolution within SPADs "";""
« Timing performance slightly deteriorates at the sensitive ‘-. .-‘
area edges |:|51F'|"|
» This can be explained by slow drift in low E-field X .."*"‘ i
» Results match design expectations b Ml
* Results match testbeam data
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Backup (1)

Visible (and near-visible) light and silicon
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Backup (2)

Notes on the testbeam
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