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Negatively weighted Events DASHH.

* This projected was motivated by a search for heavy Higgs bosons with CP violation

* There are a variety of interference scenarios in such a case
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Negatively weighted Events DASHH.

* There are negative events due to Monte-Carlo fixed order simulations — ,,Counter Terms*

donpo = dor,o + dovy —l—/dq)ldO'R = dop,o0 + doy — /d<1>10+/d<1>1 (C + dO’R)
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* This is a technical problem and there are solutions to this in literature — ,Reweighting*
* For example ,neural reweighting‘ (from Phys. Rev. D 102, 076004 (2020))
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How do we consistently build a DNN based DASHH.
analysis for this?

* DNNs have problems when trained on samples with ‘a number of’ negative
weights
* We can see this in a simple experiment:
* request a DNN to classify pictures of handwritten numbers
* Weight all the samples from a class negatively
* Evaluate on all of the other classes

J | - divergence!
‘f --l'l_".-lhI Accuracy drops

from ~100% to 50%

(all “weighted’ with w = 1), now artificially
weight (for example the 2s) with w=-1
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We can fix the training! DASHH.

Label Weights: Loss:
_ Vector:

1=1

0) N

O W = —w Locr = Z Ytarget (_lOg(youtput))
1

0

coos

Equivalent to:

/A - restores
j 1 N /maxlabel| performance in
1 ‘W ————— LocL =) Ytarget * (—10g(Youtput)) MNIST toy model:
0 (Nows — 1) =1 =t/ Accuracy:
y 50% - 99%
‘pa “tlal label’ One possible partial-label
loss, introduced by Feng et
al (arxiv: 2007.08929)
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We checked it in a scenario where we have full DASHH.
control
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What about an analysis benchmark scenario? DASHH.
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What about an analysis benchmark scenario? DASHH.

CCE training
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What about an analysis benchmark scenario? DASHH.

* We also encountered the issue where
the network evaluation produces some
bins that have a negative net weight N

* This is unphysical as far as DNN 5% CL | T — e
output bins hold physical value A

» So far: worked with absolute value of
bins for fit

* Currently implementing an algebra trick
for yield to avoid negatively weighted
events in the evaluation

(very much WIP) results:
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Conclusion DASHH.

* We found a way to train DNNs in a stable manner when samples in the
training distribution are negatively weighted

* It can be used in a full on DNN based LHC style analysis
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