System Validation of the SiPM-on-Tile Section of the CMS High Granularity Calorimeter

DPG - Calorimeters Session

Gabriele Milella on behalf of CMS HGCAL group 05.02.2024

Future at CERN: HL-LHC

Where we are

Future at CERN: HL-LHC

A "bright" future

HL-LHC - Plan (Feb '22)

CMS during HL-LHC

The challenges in the forward regions

- Radiation levels equivalent as in the region of the inner pixel trackers
 - \rightarrow Highest fluence of 10¹⁶ n_{eq}/cm² (2 MGy) after 3000 fb⁻¹
- Significant engineering demands
 - Dense calorimeter in tight space constraints
 - Fine lateral and longitudinal granularity
- Unprecedented number of trigger and data information
 - Online pileup mitigation needed
 - Dedicated offline reconstruction algorithm
 - → Existing endcap calorimeter to be replaced by the High Granularity Calorimeter

The HGCAL Project

5D Imaging Calorimeter

- High Granularity Sampling Calorimeter
 - 5D imaging calorimeter:
 3D spatial granularity, energy, timing information
 - Two separated sections in one single detector
- Active Materials
 - Silicon Sensors (CE-E and CE-H)
 - Hexagonal 8" wafers
 - **6M pads** (~620 m²)
 - Plastic Scintillators with SiPM readout (CE-H)
 - 240k scintillator tiles (~370 m²)

Scintillator Tileboard

SiPM-on-tile

Production at DESY

Workflow

- DESY is Tilemodule Assembly Center (TAC)
 - Tilemodule production
 - QC from small components to full-stack
 - Different board designs
 - Different tile materials and sizes
 - Different SiPMs sizes
 - Test in laboratory and test beam

Test Beam Campaigns

Setup

- DESY II test beam facility (>10 campaigns since 2020)
 - 3 GeV electron beam → Minimum Ionizing Particle (MIP)

Tiles on the other sides!

Pulse Shape Reconstruction of 3 GeV electron

- Timestamps of triggered events used to reconstruct the signal pulse
- 1 Bunch crossing (BX) = 25 ns (LHC)

MIP Analysis

- Time selection for in-time MIP signal in one BX
- Reconstruction of the MIP spectra → Landau-Gaussian shape
- Extraction of the MIP maximum → Signal MIP max Pedestal mean

Quantifying SiPM-on-Tile performance

Measurements of the scintillation Light Yield:

$$Light Yield[p.e.] = \frac{MIP maximum[ADC]}{SiPM Gain[ADC/p.e.]}$$

- MIP extraction from beam data
- SiPM gain extraction using low intensity LED:
 - Single Photon Spectrum reconstruction
 - Distance between photoelectrons peaks

Quantifying SiPM-on-Tile performance

- System validation: measuring Light Yield
- Requirements:
 - · Uniformity over a single tileboard
 - · Light Yield inverse proportionality with tiles area
 - Performance of SiPM of different area

Status of the Project

Preparation of mass production

Pre-series components

- Finalizing the design
- Qualifying manufacturer or process
- Not included in the installation
- Preparation for pre-production

Pre-production (2024)

- 5% of the total production
- Intended for the installation

In time for the scheduled lowering in 2027

Outlook

Journey to the CMS HGCAL

- CMS preparing for High Luminosity
 - New endcap calorimeter → HGCAL
- Key role of DESY for the scintillator section
 - Assembly and test center
- Important progress and ongoing developments
 - System performance in testbeams and lab tests

BACKUP

DPG 2024 CHUNG Validation of the SIPM-on-life Section of the CMS High Granularity Calorimeter"

Scintillator Tileboard

Detection Principle

SiPM

- Thousands of single photon avalanche diodes (SPAD) working in Geiger-Mode
- Each individual SiPM-on-tile is equipped with a low intensity LED used for calibration

HGCROC

- Front-end ASIC components
- Read up to 72 channells
- Charge and time measurements

HGCAL: 5D Imaging Calorimeter

Forward jet signatures from VBF

HGCAL: 5D Imaging Calorimeter

Forward jet signatures from VBF

VBF H \rightarrow yy + 200 PU

"The Phase-2 Upgrade of the CMS Endcap Calorimeter" Technical Design Report

Timing Information & Resolution

- Ability to contribute to the level-1 CMS trigger (L1)
 → Pileup mitigation
- 20 ps per channel of targeted resolution
 - 100% time-tagging efficiency for photon with pT~5 GeV
 - Independent from detector ageing

CMS during HL-LHC

Upgrades overview

Active Material - Silicon

Silicon Module

Radiation levels similar to pixel tracker

Hexaboard PCB

→ Hosting the readout chip

Silicon Sensor

Metalized Kapton Sheet

→ Bias supply to sensor back side

CuW BasePlate*

→ Rigidity, contributes to the absorber material

*PCB baseplate in the hadronic sector

Active Material - Silicon

Silicon Sensors

Radiation levels similar to pixel tracker

8" hexagonal wafers

- Different cells sizes
 - Different e.m./hadronic lateral shower development
 - Same cell capacitance
- Partials design
 - Circular endcap from hexagons

Outer Radius

Inner Radius

Limit between

300u and 200u sensors

Limit between 200u and 120u

"Measurement of silicon-sensor prototypes for the **CMS High-Granularity Calorimeter**"

200 µm

1.2 cm

192 CELLS

Timing Resolution

Specifications

- $\sigma_t = \sigma_{jitter} \oplus \sigma_{floor}$
 - $\sigma_{jitter} = A / (S/N)$, $\sigma_{floor} \sim 20 ps$
 - 20 ps → targeted resolution
- Timing resolution **not** varying significantly with sensor thickness or radiation when the resolution is measured as a function of S/N

HGCAL Mechanics

CE-E Mechanics:

- Dense layering of cassettes, lead sheets, stacked on a stainless steel back-plate
- Mechanics in advanced design stage
 - To be made by CERN and industrial partners

CE-H Mechanics:

- Layered stainless steel structure
- All raw steel plates and cylinders have been manufactured
 - Pre-production started in March 2023

Moderator (Polyethylene HDPE)

Moderator supporting structure (Aluminum EN-AW 5083)

CE-E Inner support Cylinder (Aluminum)

(Stainless steel 316L)

Z bars connecting ring (Stainless steel 304 L)

CE-E Backdisk (Stainless steel 304L)

HGCAL Readout Chip

HGCROC

"The Phase-2 Upgrade of the CMS endcap calorimeter" Technical Design Report

- Front-end ASIC component
- Same design for Si and Scintillator with adaptation
 - → conveyor gain used as pre-ampflier
- Two halves chip with 78 channels
- Low noise, large dynamic range
 → from MIP to showers
- Accommodating 12 µs of latency
 → L1 requirement
- High speed readout links
 → 1.28 Gb/s
- Radiation tolerance
- Low power consumption: ~20 mW
 → 125 kW per endcap

Simulation and Reconstruction

Offline reconstruction

- Detector simulation
 - Geometry close to the final design
 - Sensor/Electronics provide full end-to-end simulation
 - Reconstruction with realistic end-of-life conditions
- Raw data unpacking
 - Full unpacking in ~40ms
 - First-level calibration exploiting GPU-compliant module
- Reconstruction with TICL and CLUE-3D
 - Iterative clustering
 - RecHits → LayerClusters → Tracksters
- End-to-end Machine Learning
 - Noise filter
 - GravNet graph neural network performs clustering on cleaned data

Status of the Project

Summary of the principal components and Workflow

SiPM Gain Analysis

Single Photon Spectrum

- The LED system on-board the tileboard pulses the low intensity LEDs.
- The photons produced by the LEDs are detected by the SiPMs
 - Pulses from SiPM are sampled at the pulse amplitude
 - Resulting histogram shows the pedestal peak and peaks corresponding to the number of SiPM cells discharged due to photon detection
 - Often referred to as a Single Photon Spectrum (SPS)

