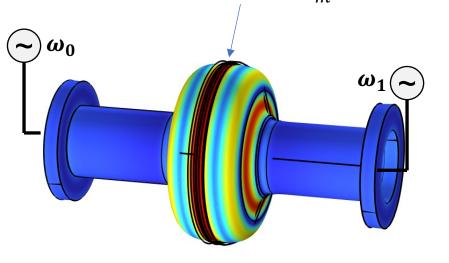

Mechanical-EM Coupling

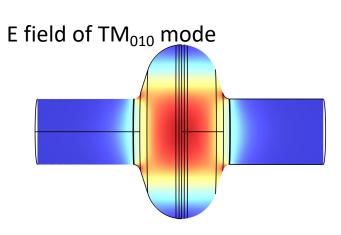
Coupling of wall displacement q to cavity fields e_0 and e_1 :

Energy in 0 and 1 modes Coupling of 0 and 1 Mode to Vibration $\ddot{q}(t)+\frac{w_m}{Q_m}\dot{q}(t)+\omega_m^2q(t)=2\frac{\sqrt{U_0U_1}}{V^{\frac{1}{3}}M}C_{01}^me_0^*(t)e_1(t)$ Cavity volume and mass

=> On Resonance with w_1 - w_0 the modes e_0 and e_1 drive q with amplitude:

 $AMP[q(t)] = \frac{2Q_m}{\omega_m^2} \frac{\sqrt{U_0 U_1}}{V^{\frac{1}{3}} M} C_{01}^m$


Real Amplitude depends on position on wall:


$$A(x,t) = \xi(x) \cdot q(t), \quad |\xi_{peak}| \approx O(1)$$

Displacement Field

Possible Measurement with e.g. one cell cavity

Mechanical Vibration around $\omega_m=5~\mathrm{kHz}$

IDEA:

- ullet Drive e.g. TM $_{010}$ Mode at $\,\omega_0=\omega_{010}-\omega_m/2$ AND at $\,\omega_1=\omega_{010}+\omega_m/2$
- ullet If coupling $C_{01}^m
 eq 0$ this should excite a vibration at $\omega_1 \omega_0 = \omega_m$
- The vibration could be measured with lasers or accelerometers

Requirement: Oscillator bandwidth << bandwidth of EM eigenmode (≈ kHz)

GOALS:

- Measure C_{01}^m
- verify theoretical treatment of EM-Mechanical Coupling
- verify EM back-action effects

IN THE FUTURE:

- Could repeat with GW cavity but drive pump and signal mode
 - -> Check if quadrupole mode gets excited