Quantum storage: storing potterns & state preparation: recall: efficient representation of the feature data into basis state - basis encoding For sake of simplification the alopaithm presented lest twin will be rewritten in a slightly different method: recall: this abgorithm offers a polynomial number of poterns

Definition: Ŝ۴ -- 1/VP V (P-1) /P U(P-1) /P 1/UP 1 < p < m m: mb of pottens m: mb of bits per pattern conditional transforms _s bring the sat of paterns into cohoral quaratem States \$ \$° { :

$$\hat{F} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \implies \text{plaps the state of a quibit}$$

$$\hat{F}^{\circ} = \begin{bmatrix} \hat{F} & \hat{\partial} \\ \hat{\sigma} & \hat{T}_{e} \end{bmatrix} \implies 2 \text{ quoted CNOT}$$

$$\text{Ls flaps the state of the 1nd quibit is in 102 state}$$

$$\hat{F}' = \begin{bmatrix} \hat{T}_{2} & \hat{\sigma} \\ \hat{\sigma} & \hat{F} \end{bmatrix} \implies \text{some on } \hat{F}^{\circ} \text{ but flaps if}$$

$$\text{the first quoted is in 112 state}$$

$$\hat{A}^{\circ\circ} = \begin{bmatrix} \hat{F} & \hat{\sigma} \\ \hat{\sigma} & \hat{T}_{6} \end{bmatrix} \implies 3 \text{-quoted operator}$$

$$\implies \text{flips the State of the 3nd quoted}$$
Friedkin gate

if the first 2 one in state 100>

other operators are also used: $\hat{A}^{o'}$, $\hat{A}^{'o}$ & $A^{''}$ -> some os \widehat{A}^{00} but \widehat{F} appears in the other 3 possible Let P be the set of moining patterns of length m to be memorized -> the algorithm requires 2 n+1 quibits as: 1 n, g, c > with n: Storage registr of length m g: temp storage of length m-1 c: control april

of length 2

* the abgorithm holds a superposition of the patterns 1 qubit -s 1 bit ni the pattern x the gac registers are restored into 100 often very ilention

The algorithm:

The quantum system is initialized into the 100 state.

The qubits in the x register are selectively flipped so that their states correspond to the inputs of he fest pattern.

. The state in the superposition is broken into a pieces

smollér & larger

. The status of the smaller is made permanent in the C- register

. The or register of the larger price is solicitly flipped to moth the input of the second pattern

- o the pattern to be Stored is compared of the smaller prieces of he same size, i.e. a coherent superposition of states is created that corresponds to the patterns when the amplitude of the states in the superposition are all equil
 - * the adjourthm requers O(mm) Stops to encode the pattern os a quantum superposetion over n grantin neuron

- 1) 100,0,00> 2) 100,0,00>
- $\frac{F}{\hat{S}^{2}} = \frac{101,0,100}{\sqrt{3}} = \frac{101,0,100}{\sqrt{3}}$ 3) 101,0,10 >
 - SP=3 = S3; più the number of patterns (including and)

4)
$$\frac{1}{\sqrt{5}} |01,0,10\rangle + \sqrt{\frac{2}{3}} |01,0,10\rangle + \sqrt{\frac{3}{5}} |01,0,00\rangle + \sqrt{\frac{3}{5}} |01,0,00\rangle$$

$$2^{nol}(1,5) \frac{1}{\sqrt{5}} |01,0,01\rangle + \sqrt{\frac{3}{5}} |00,00\rangle + \sqrt{\frac{3}{5}} |10,0,01\rangle + \sqrt{\frac{3}{5}} |10,0,10\rangle$$

$$(6) \frac{5}{2} > \frac{1}{\sqrt{3}} |01,0,01\rangle + \frac{1}{\sqrt{5}} |10,0,01\rangle + \frac{1}{\sqrt{5}} |10,0,00\rangle$$

$$(7) \frac{5}{\sqrt{5}} > \frac{1}{\sqrt{5}} |10,0,01\rangle + \frac{1}{\sqrt{5}} |10,0,00\rangle$$

$$(8) \frac{1}{\sqrt{5}} > \frac{1}{\sqrt{5}} |01,0,01\rangle + \frac{1}{\sqrt{5}} |10,0,01\rangle + \frac{1}{\sqrt{5}} |11,0,10\rangle$$

$$(9) \text{ (now } p=1) \frac{5}{\sqrt{5}} > \frac{1}{\sqrt{5}} |01,0,01\rangle + \frac{1}{\sqrt{5}} |10,0,01\rangle + \frac{1}{\sqrt{5}} |11,0,10\rangle$$

$$(10,0,01) + \frac{1}{\sqrt{5}} |11,0,10\rangle$$

$$(10,0,01) + \frac{1}{\sqrt{5}} |11,0,10\rangle$$

10) 5 101,0,012 + 15 110,0,012 + 15 11,0,012

11) g & c one the same for all the states in the superposition

g & c commot be entangled with a register

=> \$\frac{1}{4} \frac{1}{4} \fr

* the Flip operation:

loop over m

if mon-zero state

apply $\hat{F}_{2n_i}^o$ end loop

* the save operation

appy A 2, 2, 2, 2 mm = 40 gm

Apply F's

Loop from n:s
Apply
Anigina gina

Apply Azizi