
Nicola Malavasi - Marie Curie Fellow @ MPE - 16/04/2024

Containers for use with Docker,
Apptainer, and Compute4PUNCH
PUNCH Young Academy training

Tutorial outline

• Introduction

• What are containers?

• How to use pre-made containers

• How to create your own container

• Exercise: container creation

• Tips and tricks to optimize container creation

• Using containers in C4P

Speaker introduction
Who am I?

• Astronomer (i.e. not computer scientist).

• Ph.D. in 2016, PUNCH4NFDI postdoc for 2 years (2022-23).

• Did not know containers before starting to work for PUNCH. Now can
confidently use containers in everyday scientific life (i.e. container use does
not imply a steep learning curve).

• Using containers (in a non-expert way, for everyday science) is accessible to
everyone, plenty of resources to move to advanced stage.

Why this tutorial?
Why learn about containers?

• Containers are a powerful tool, can be useful in many circumstances.

• Simplify life, streamline analysis (e.g. code installation, migration to new
machines).

• More and more HPC infrastructures require the use of containers to some extent.

• Compute4PUNCH requires mandatory use of containers.

• There is no need to know everything about container use to start experiencing
the benefits.

• Offer the perspective of a non-expert, science-centric, container user.

Nicola Malavasi - Marie Curie Fellow @ MPE - 16/04/2024

Part one
What are containers?
How to use pre-made containers.

Virtual Machines
A VM is a reproduction of a physical computer running on a host

system. Host system devolves resources to VM.

It runs on the host physical infrastructure, on top of the host OS. It
contains a full OS, reproduces functionality of physical machine.

Host
Physical

Infrastructure

Host
Operating

System

VM Operating System

Software running in VM

Virtual Machines
A VM is a reproduction of a physical computer running on a host

system. Host system devolves resources to VM.

It runs on the host physical infrastructure, on top of the host OS. It
contains a full OS, reproduces functionality of physical machine.

Host
Physical

Infrastructure

Host
Operating

System

VM Operating System

Software running in VM

Powerful and user-friendly, yet cumbersome:

• Easy to use: “computer in computer”, graphical interface,
familiar system.

• Full functionality of OS: easy to install code, run software as you
would on normal computer.

• Heavy on resources: host must support full additional OS and
provide CPU/RAM, VM filesystem is stored on host filesystem
(can use significant memory).

Containers
One can think of containers as similar to VM, but more lightweight. Do
not reproduce entire physical machine, but stripped-down version of

OS, runtime environment, and what necessary for software execution.

More than a conda environment but less than a VM.

Host
Physical

Infrastructure

Host
Operating

System

Environ.
including

OS

Software
running in
container

Containers
One can think of containers as similar to VM, but more lightweight. Do
not reproduce entire physical machine, but stripped-down version of

OS, runtime environment, and what necessary for software execution.

More than a conda environment but less than a VM.

Host
Physical

Infrastructure

Host
Operating

System

Environ.
including

OS

Software
running in
container

Lightweight, yet less immediate:

• Isolated execution of software, independent of host architecture.

• Lightweight: only what needed for software to run.

• Container creation and execution can be scripted, single

commands can be executed inside the container without the
need to boot up full VM.

• Less user-friendly: no graphic interface, new programming
language needed to create one, special syntax for command
execution.

VM vs Containers

Source: https://www.redhat.com/en/topics/containers/containers-vs-vms

Containers

Host
Physical

Infrastructure

Host
Operating

System

Environ.
including

OS

Software
running in
container

• Isolation: software is run without contact to or from the host OS
or other containers.

• Efficiency: many lightweight containers can be run at the same
time on same infrastructure.

• Portability: as long as container engine is present, same
container can be run anywhere.

Containers

Host
Physical

Infrastructure

Host
Operating

System

Environ.
including

OS

Software
running in
container

• Isolation: software is run without contact to or from the host OS
or other containers.

• Efficiency: many lightweight containers can be run at the same
time on same infrastructure.

• Portability: as long as container engine is present, same
container can be run anywhere.

In everyday science:

• Code installation: old code can be run in custom container, need
only be installed once, can be run anywhere.

• Required/useful for HPC resources.

Container engine

Host
Physical

Infrastructure

Host
Operating

System

Environ.
including

OS

Software
running in
container

Container
engine

• A piece of software that manages containers, allows to create
and operate them, and interface them with host OS.

• Different philosophies and approaches.

• Many exist, will mainly talk about two.

Docker

• Straightforward, well documented, easy to install and learn.

• User-friendly language format to create container creation scripts.

• Community/Docker Hub with pre-made containers.

First steps with containers

First steps with containers
Important terms

Environ.
including

OS

Software
running in
container

First steps with containers
Important terms

• Container: a process, running in an environment,
isolated from the host and everything else. Example:
a python instance executing a script.

Environ.
including

OS

Software
running in
container

First steps with containers
Important terms

• Container: a process, running in an environment,
isolated from the host and everything else. Example:
a python instance executing a script.

• Image: an immutable file supplying all the
information (OS, environment, source, etc.).
Example: a stripped-down ubuntu installation,
python installed on top of that, with an active conda
environment, and a folder with a python script.

Environ.
including

OS

First steps with containers
Important terms

• Container: a process, running in an environment,
isolated from the host and everything else. Example:
a python instance executing a script.

• Image: an immutable file supplying all the
information (OS, environment, source, etc.).
Example: a stripped-down ubuntu installation,
python installed on top of that, with an active conda
environment, and a folder with a python script.

• Repository: a storage place for images ready to be
run as containers. In case of Docker: an internet
page, called Docker Hub.

Environ.
including

OS

Environ.
including

OS

Environ.
including

OS

First steps with containers

First steps with containers

Actions:

First steps with containers

Actions:

• Image pull: download a pre-made image from a registry.

First steps with containers

Actions:

• Image pull: download a pre-made image from a registry.

• Image build: create image from scratch.

First steps with containers

Actions:

• Image pull: download a pre-made image from a registry.

• Image build: create image from scratch.

• Container start: start a container from an image (i.e. a contained process in an
environment set by an image).

First steps with containers

Actions:

• Image pull: download a pre-made image from a registry.

• Image build: create image from scratch.

• Container start: start a container from an image (i.e. a contained process in an
environment set by an image).

• Container run/exec: execute a command in a container.

First steps with containers

Actions:

• Image pull: download a pre-made image from a registry.

• Image build: create image from scratch.

• Container start: start a container from an image (i.e. a contained process in an
environment set by an image).

• Container run/exec: execute a command in a container.

• Container stop: stop a container.

First steps with containers

Actions:

• Image pull: download a pre-made image from a registry.

• Image build: create image from scratch.

• Container start: start a container from an image (i.e. a contained process in an
environment set by an image).

• Container run/exec: execute a command in a container.

• Container stop: stop a container.

Actions:

• Image pull: download a pre-made image from a registry.

Example: Python2.7
Pulling an image

We want to have access to a python 2.7 installation (e.g. because our code needs it).

First: let’s check that python 2.7 is not already installed.

Pulling an image

Second: let’s download the necessary image. The command is docker image pull.

Example: Python2.7

docker pull python:2.7.18-stretch

Pulling an image

Second: let’s download the necessary image. The command is docker image pull.

Example: Python2.7

docker pull python:2.7.18-stretch

Command

Pulling an image

Second: let’s download the necessary image. The command is docker image pull.

Example: Python2.7

docker pull python:2.7.18-stretch

Command Image name

Pulling an image

Second: let’s download the necessary image. The command is docker image pull.

Example: Python2.7

docker pull python:2.7.18-stretch

Command Image name Tag

Pulling an image

Second: let’s download the necessary image. The command is docker image pull.

Example: Python2.7

Pulling an image

Another example: downloading an ubuntu image.

Example: Ubuntu

docker pull ubuntu:latest

Pulling an image

Another example: downloading an ubuntu image.

Example: Ubuntu

docker pull ubuntu:latest

Command

Pulling an image

Another example: downloading an ubuntu image.

Example: Ubuntu

docker pull ubuntu:latest

Command Image name

Pulling an image

Another example: downloading an ubuntu image.

Example: Ubuntu

docker pull ubuntu:latest

Command Image name Tag

Pulling an image

Another example: downloading an ubuntu image.

Example: Ubuntu

Pulling an image

Another example: downloading an ubuntu image.

Example: Ubuntu

First steps with containers

Actions:

• Image pull: download a pre-made image from a registry.

• Image build: create image from scratch.

• Container start: start a container from an image (i.e. a contained process in an
environment set by an image).

• Container run/exec: execute a command in a container.

• Container stop: stop a container.

Actions:

• Container start: start a container from an image (i.e. a contained process in an
environment set by an image).

• Container run/exec: execute a command in a container.

•

Example: Python2.7
Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.

The command is docker run.

docker run -it --name python27_c python:2.7.18-stretch

Example: Python2.7
Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.

The command is docker run.

docker run -it --name python27_c python:2.7.18-stretch

Command

Example: Python2.7
Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.

The command is docker run.

docker run -it --name python27_c python:2.7.18-stretch

Command

Interactive

STDOUT to current terminal

Example: Python2.7
Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.

The command is docker run.

docker run -it --name python27_c python:2.7.18-stretch

Command

Custom container name

Otherwise randomly chosen

Interactive

STDOUT to current terminal

Example: Python2.7
Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.

The command is docker run.

docker run -it --name python27_c python:2.7.18-stretch

Command

Custom container name

Otherwise randomly chosen

Image name and tag
where the container

is run

Interactive

STDOUT to current terminal

Example: Python2.7
Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.

The command is docker run.

Example: Python2.7
Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.

The command is docker run.

Example: Ubuntu
Running a container

In the case of the Ubuntu image, it is a good way to show container isolation.

First steps with containers

Actions:

• Image pull: download a pre-made image from a registry.

• Image build: create image from scratch.

• Container start: start a container from an image (i.e. a contained process in an
environment set by an image).

• Container run/exec: execute a command in a container.

• Container stop: stop a container.

Actions:

• Container run/exec: execute a command in a container.

•

Example: Ubuntu
Executing a command in a container

We perform an ls in a non-interactive way. The command is docker exec.

docker exec -it ubuntu_c ls

Example: Ubuntu
Executing a command in a container

We perform an ls in a non-interactive way. The command is docker exec.

docker exec -it ubuntu_c ls

Command

Example: Ubuntu
Executing a command in a container

We perform an ls in a non-interactive way. The command is docker exec.

docker exec -it ubuntu_c ls

Command

Interactive

STDOUT to current terminal

Example: Ubuntu
Executing a command in a container

We perform an ls in a non-interactive way. The command is docker exec.

docker exec -it ubuntu_c ls

Command

Name of the container
where the command is

executed
Interactive

STDOUT to current terminal

Example: Ubuntu
Executing a command in a container

We perform an ls in a non-interactive way. The command is docker exec.

docker exec -it ubuntu_c ls

Command

Name of the container
where the command is

executed

Command to be
executed

Interactive

STDOUT to current terminal

Example: Ubuntu
Executing a command in a container

We perform an ls in a non-interactive way.

Access to files outside of the container
Mounting volumes

Processes run in containers are isolated. There is no exchange with the host
and the container has its own user, filesystem etc.

How to have access to files outside of container? E.g. script is developed locally
and only run in container.

Solution: volume (bind) mount. Similar to plugging USB stick in container.

Example: Python2.7
Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

docker run -it --name my_c --mount type=bind,
source=local_path, target=path_in_container image_name:tag

Example: Python2.7
Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

docker run -it --name my_c --mount type=bind,
source=local_path, target=path_in_container image_name:tag

Same as before

Example: Python2.7
Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

docker run -it --name my_c --mount type=bind,
source=local_path, target=path_in_container image_name:tag

Same as before

Same as before

Example: Python2.7
Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

docker run -it --name my_c --mount type=bind,
source=local_path, target=path_in_container image_name:tag

Example: Python2.7
Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

--mount type=bind, source=local_path,
target=path_in_container

Example: Python2.7
Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

--mount type=bind, source=local_path,
target=path_in_container

Type of mount: bind
is not the only one

Example: Python2.7
Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

--mount type=bind, source=local_path,
target=path_in_container

Type of mount: bind
is not the only one

Local folder outside container

Example: Python2.7
Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

--mount type=bind, source=local_path,
target=path_in_container

Type of mount: bind
is not the only one

Local folder outside container

Path folder will have inside container

Example: Python2.7
Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

Example: Python2.7
Mounting a volume

The container
can see our
script. Let’s
give it the

command to
install

matplotlib and
run our script.

Example: Python2.7
Mounting a volume

Conclusions

• Very easy to switch between containers (e.g. ubuntu/Python2.7).

• We can have our installation ready in minutes without too much trouble.

• Powerful way to have our code working.

