Containers for use with Docker,
Apptainer, and Compute4PUNCH

PUNCH Young Academy training

Nicola Malavasi - Marie Curie Fellow @ MPE - 16/04/2024

- - o
OOOOO
oo

MACTIEINS

Tutornial outline

e |ntroduction

 What are containers?

* How to use pre-made containers

 How to create your own container

e EXercise: container creation

* Tips and tricks to optimize container creation

* Using containers in C4P

Speaker introduction

Who am 1?

* Astronomer (i.e. not computer scientist).
 Ph.D. in 2016, PUNCH4NFDI postdoc for 2 years (2022-23).

* Did not know containers before starting to work for PUNCH. Now can
confidently use containers in everyday scientific life (i.e. container use does
not iImply a steep learning curve).

* Using containers (in a non-expert way, for everyday science) is accessible to
everyone, plenty of resources to move to advanced stage.

Why this tutorial?

Why learn about containers?

* Containers are a powerful tool, can be useful in many circumstances.

o Simplify life, streamline analysis (e.g. code installation, migration to new
machines).

 More and more HPC infrastructures require the use of containers to some extent.
« Compute4dPUNCH requires mandatory use of containers.

* There is no need to know everything about container use to start experiencing
the benefits.

o Offer the perspective of a non-expert, science-centric, container user.

Part one

What are containers?
How to use pre-made containers.

Nicola Malavasi - Marie Curie Fellow @ MPE - 16/04/2024

TIENS

A

10,1001 110011“,\'\“\
11%9'0004808
Wt MMARIE CURIE

Virtual Machines

A VM is a reproduction of a physical computer running on a host '
system. Host system devolves resources to VM.
It runs on the host physical infrastructure, on top of the host OS. It _

contains a full OS, reproduces functionality of physical machine.

Host
Operating
System

Host

Physical
Infrastructure

Virtual Machines

A VM is a reproduction of a physical computer running on a host '
system. Host system devolves resources to VM.
It runs on the host physical infrastructure, on top of the host OS. It _

contains a full OS, reproduces functionality of physical machine.

Powerful and user-friendly, yet cumbersome:

H
1 . 5y . . Opel?as:cting
* Easy to use: “computer in computer”, graphical interface, System
familiar system.

* Full functionality of OS: easy to install code, run software as you

would on normal computer.] I!lﬂo§t |
* Heavy on resources: host must support full additional OS and nfrastrasture

provide CPU/RAM, VM filesystem is stored on host filesystem
(can use significant memory).

Containers ‘

One can think of containers as similar to VM, but more lightweight. Do rﬁzmafﬁ]
not reproduce entire physical machine, but stripped-down version of Contai?,er
OS, runtime environment, and what necessary for software execution.

More than a conda environment but less than a VM. -

Host
Operating
System

Host

Physical
Infrastructure

Containers ‘

One can think of containers as similar to VM, but more lightweight. Do Software
not reproduce entire physical machine, but stripped-down version of rclm':.?,;?
OS, runtime environment, and what necessary for software execution.
More than a conda environment but less than a VM. -
Lightweight, yet less immediate: '
 |solated execution of software, independent of host architecture. Host
» Lightweight: only what needed for software to run. “Systom.

» Container creation and execution can be scripted, single
commands can be executed inside the container without the

need to boot up full VM. Host
: _ . . Physical
* |ess user-friendly: no graphic interface, new programming nfrastructure

language needed to create one, special syntax for command
execution.

VM vs Containers
VIRTUALIZATION CONTAINERS

VS, SUPPORTING FILES SUPPORTING FILES
RUNTIME RUNTIME

HYPERVISOR

HOST OPERATING SYSTEM HOST OPERATING SYSTEM

Source: https://www.redhat.com/en/topics/containers/containers-vs-vms

Containers

e |solation: software Is run without contact to or from the host OS
or other containers.

o Efficiency: many lightweight containers can be run at the same
time on same infrastructure.

o Portability: as long as container engine is present, same
container can be run anywhere.

Software
running in
container

Host
Operating
System

Host

Physical
Infrastructure

Containers

e |solation: software Is run without contact to or from the host OS
or other containers.

o Efficiency: many lightweight containers can be run at the same
time on same infrastructure.

o Portability: as long as container engine is present, same
container can be run anywhere.

In everyday science:

Code installation: old code can be run in custom container, need
only be installed once, can be run anywhere.

* Required/useful for HPC resources.

Software
running in
container

Host
Operating
System

Host

Physical
Infrastructure

Container engine

* A piece of software that manages containers, allows to create

and operate them, and interface them with host OS.

e Different philosophies and approaches.

 Many exist, will mainly talk about two.

gocker

7\
A APPTAINER

Software
running in
container

Container
engine

Host

Operating
System

Host

Physical
Infrastructure

Docker

o Straightforward, well documented, easy to install and learn.
» User-friendly language format to create container creation scripts.

« Community/Docker Hub with pre-made containers.

&

gocker

First steps with containers

First steps with containers

Important terms

Software
running in
container

First steps with containers

Important terms

* Container: a process, running in an environment,
isolated from the host and everything else. Example: ‘
a python instance executing a script.

Software

running in
container

First steps with containers

Important terms

* Container: a process, running in an environment,
iIsolated from the host and everything else. Example:
a python instance executing a script.

* Image: an immutable file supplying all the
information (OS, environment, source, etc.).
Example: a stripped-down ubuntu installation,
python installed on top of that, with an active conda
environment, and a folder with a python script.

First steps with containers

Important terms

* Container: a process, running in an environment,
iIsolated from the host and everything else. Example:
a python instance executing a script.

* Image: an immutable file supplying all the
information (OS, environment, source, etc.).
Example: a stripped-down ubuntu installation,
python installed on top of that, with an active conda
environment, and a folder with a python script.

 Repository: a storage place for images ready to be
run as containers. In case of Docker: an internet
page, called Docker Hub.

First steps with containers

First steps with containers

Actions:

First steps with containers

Actions:

* Image pull: download a pre-made image from a registry.

First steps with containers

Actions:

* Image pull: download a pre-made image from a registry.

* Image build: create image from scratch.

First steps with containers

Actions:

* Image pull: download a pre-made image from a registry.
* Image build: create image from scratch.

o Container start: start a container from an image (i.e. a contained process in an
environment set by an image).

First steps with containers

Actions:

* Image pull: download a pre-made image from a registry.

* Image build: create image from scratch.

o Container start: start a container from an image (i.e. a contained process in an
environment set by an image).

e Container run/exec: execute a command in a container.

First steps with containers

Actions:

* Image pull: download a pre-made image from a registry.
* Image build: create image from scratch.

o Container start: start a container from an image (i.e. a contained process in an
environment set by an image).

e Container run/exec: execute a command in a container.

e Container stop: stop a container.

First steps with containers

Actions:

* Image pull: download a pre-made image from a registry.

Example: Python2.7

Pulling an image

We want to have access to a python 2.7 installation (e.g. because our code needs it).
First: let’s check that python 2.7 is not already installed.

nmalavasi@ga-1t7982 ~ % python2.7

zsh: command not found: python2.7
nmalavasi@Pga-1t7982 ~ % python2

zsh: command not found: python2
nmalavasi@ga-1t7982 ~ % python3

Python 3.9.6 (default, Feb 3 2024, 15:58:27)
[Clang 15.0.0 (clang-1500.3.9.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

Example: Python2.7

Pulling an image

Second: let’s download the necessary image. The command is docker image pull.

docker pull python:2.7.18-stretch

Example: Python2.7

Pulling an image

Second: let’s download the necessary image. The command is docker image pull.

docker pullfpython:2.7.18-stretch

T

Command

Example: Python2.7

Pulling an image

Second: let’s download the necessary image. The command is docker image pull.

python:2.7.18-stretch
T

Command Image name

Example: Python2.7

Pulling an image

Second: let’s download the necessary image. The command is docker image pull.

T

Command Image name Tag

Example: Python2.7

Pulling an image

Second: let’s download the necessary image. The command is docker image pull.

nmalavasi@Pga-1t7982 ~ % docker pull python:2.7.18-stretch
2.7.18-stretch: Pulling from library/python

65d54b492d59: Pull complete

7be35cdee43e: Pull complete

b803ac2cPeb9: Pull complete

f56b7aalf85c: Pull complete

6b89e9488b4b: Pull complete

al67bb72b194: Pull complete

3123ab59854f: Pull complete

722¢c4b126156: Pull complete

29a2bbd5f8f0: Pull complete

Digest: sha256:548e680020444b0f6ddc4c7b0c24964d1laf5f47cd2e2b3b44d742852b8b09cfcC
Status: Downloaded newer image for python:2.7.18-stretch
docker.1o/library/python:2.7.18-stretch
nmalavasi@Pga-1t7982 ~ %

Example: Ubuntu

Pulling an image

Another example: downloading an ubuntu image.

docker pull ubuntu:latest

Example: Ubuntu

Pulling an image

Another example: downloading an ubuntu image.

docker pull ubuntu:latest

T

Command

Example: Ubuntu

Pulling an image

Another example: downloading an ubuntu image.

docker pull latest

T T

Command Image name

Example: Ubuntu

Pulling an image

Another example: downloading an ubuntu image.

docker pullfubuntujlatest
T I

Command Image name Tag

Example: Ubuntu

Pulling an image

Another example: downloading an ubuntu image.

nmalavasi®Pga-1t7982 ~ % docker pull ubuntu
Using default tag: latest

latest: Pulling from library/ubuntu
f4bb4e8dcaf2: Pull complete

Digest: sha256:77906da86b60585cel12215807090eb327e7386c8fafb5402369e421f44effl7e
Status: Downloaded newer image for ubuntu:latest
docker.io/library/ubuntu:latest

nmalavasi®Pga-1t7982 ~ %

Example: Ubuntu

Pulling an image

Another example: downloading an ubuntu image.

nmalavasi®Pga-1t7982 ~ % docker pull ubuntu
Using default tag: latest

latest: Pulling from library, ubuntu
f4bb4e8dcaf2: Pull complete

Digest: sha256:77906da86b60585cel12215807090eb327e7386c8fafb5402369e421f44effl7e
Status: Downloaded newer image for ubuntu:latest
docker.io/library/ubuntu:latest

nmalavasi®Pga-1t7982 ~ %

First steps with containers

Actions:

o Container start: start a container from an image (i.e. a contained process in an
environment set by an image).

e Container run/exec: execute a command in a container.

Example: Python2.7

Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.
The command is docker run.

docker run -it --name python27_c python:2.7.18-stretch

Example: Python2.7

Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.

The command i1s docker run.
Command

-it --name python27_c python:2.7.18-stretch

Example: Python2.7

Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.

The command i1s docker run.
Command

--name python27_c python:2.7.18-stretch

Interactive
STDOUT to current terminal

Example: Python2.7

Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.

The command i1s docker run.
Command

Interactive Custom container name
STDOUT to current terminal Otherwise randomly chosen

python:2.7.18-stretch

Example: Python2.7

Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.

The command i1s docker run.
Command

--name python27_c|python:2.7.18-stretch

Interactive Custom container name Image name and tag

STDOUT to current terminal Otherwise randomly chosen where the container
iS run

Example: Python2.7

Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.
The command is docker run.

nmalavasi®Pga-1t7982 ~ % docker run -it —-—-name python27_c python:2.7.18-stretch
Python 2.7.18 (default, Apr 21 2020, 10:02:18)
[GCC 6.3.0 20170516] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

Example: Python2.7

Running a container

We go back to our Python2.7 image. Let’s start a container (i.e. a self-contained
process) using the information saved in the image.
The command is docker run.

nmalavasi@Pga-1t7982 ~ % docker run -it —--name python27_c python:2.7.18-stretch
Python 2.7.18 (default, Apr 21 2020, 10:02:18)

[GCC 6.3.0 20170516] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> print('a')

a
>>> print 'a'
a

>>>

Example: Ubuntu

Running a container

In the case of the Ubuntu image, it is a good way to show container isolation.

nmalavasi®Pga-1t7982 ~ % docker run -it --name ubuntu_c ubuntu
root©®9d341f9b38cc:/# pwd

/

root®9d341f9b38cc:/# whoami
root
root©®9d341f9b38cc:/#

First steps with containers

Actions:

e Container run/exec: execute a command in a container.

Example: Ubuntu

Executing a command in a container

We perform an Is in a non-interactive way. The command is docker exec.

docker exec -1t ubuntu cls

Example: Ubuntu

Executing a command in a container

We perform an Is in a non-interactive way. The command is docker exec.

Command

N
-it ubuntu_c Is

Example: Ubuntu

Executing a command in a container

We perform an Is in a non-interactive way. The command is docker exec.

Command

\

Interactive
STDOUT to current terminal

ubuntu cls

Example: Ubuntu

Executing a command in a container

We perform an Is in a non-interactive way. The command is docker exec.

Command
\
docker exec|-1tjubuntu_clls
Interactive Name of tht container

where the command Is

STDOUT to current terminal
executed

Example: Ubuntu

Executing a command in a container

We perform an Is in a non-interactive way. The command is docker exec.

Command to be
Command executed

\

Interactive
STDOUT to current terminal

Name of the container
where the command Is
executed

Example: Ubuntu

Executing a command in a container

We perform an Is in a non-interactive way.

nmalavasi@Pga-1t7982 ~ % docker exec -1t ubuntu_c 1ls
bin dev home media opt root sbin sys usr
boot etc 1ib mnt Pproc run STV tmp var
nmalavasi@Pga-1t7982 ~ %

Access to files outside of the container

Mounting volumes

Processes run in containers are isolated. There is no exchange with the host
and the container has its own user, filesystem etc.

How to have access to files outside of container? E.g. script is developed locally
and only run in container.

Solution: volume (bind) mount. Similar to plugging USB stick in container.

Example: Python2.7

Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

docker run -it --name my_c --mount type=bind,
source=local_path, target=path_in_container image_name:tag

Example: Python2.7

Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

Same as before

--mount type=bind,

source=local_path, target=path_in_container image_name:tag

Example: Python2.7

Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

Same as before

--mount t

source=local_path, target=path_in_containe

Image_name:tag

Same as before

Example: Python2.7

Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

docker run -it --name my_c --mount type=bind,
source=local_path, target=path_in_container image_name:tag

Example: Python2.7

Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

--mount type=bind, source=local_path,
target=path_in_container

Example: Python2.7

Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

Type of mount: bind

IS hot the only one \
--mount|type=bind, source=local_path,

target=path_in_container

Example: Python2.7

Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

Type of mount: bind Local folder outside container
IS not the only one

N '
--mount|type=bind,|source=local_path,
= B

target=path_in_container

Example: Python2.7

Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

Type of mount: bind Local folder outside container

IS hot the only one \ l
--mount|type=Dbind,|source=local_path,
target=path_in_container

g

Path folder will have inside container

Example: Python2.7

Mounting a volume

Let’s go back to the Python2.7 example. We have to recreate the container with a bind
mount to a local folder on the laptop.

nmalavasi@Pga-1t7982 ~ % docker run -it --name py_c —--mount type=bind, source=/Users/nmalavasi/Desktop/PUNCH_useful/Presentations/PYA_tutorial_container/tutorial_material,target=/place_
of_script python:2.7.18-stretch

Python 2.7.18 (default, Apr 21 2020, 10:02:18)

[GCC 6.3.0 20170516] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import os

>>> os.system('ls')

bin boot dev etc home 1lib media mnt opt place_of_script proc root run sbin srv sys tmp
(%)

>>> os.system('ls /place_of_script')

example_script_simple.py

(%)

>>>

Example: Python2.7

Mounting a volume

The container
can see our

script. Let’s
give it the
command to
install
matplotlib and
run our script.

nmalavasi@Pga-1t7982 ~ % docker start py_c
py_c
nmalavasi®Pga-1t7982 ~ % docker exec -it py_c pip install matplotlib
DEPRECATION: Python 2.7 reached the end of its life on January 1st, 2020. Please upgrade your Python as Python 2.7 is no longer maintained. A future version of pip will drop support fo
r Python 2.7. More details about Python 2 support in pip, can be found at https://pip.pypa.io/en/latest/development/release-process/#python-2-support
Collecting matplotlib
Downloading matplotlib-2.2.5.tar.gz (36.7 MB)
| | 36.7 MB 6.1 MB/s
Processing /root/.cache/pip/wheels/fe/49/d9/dbd8037d1f7b1672ebcdba@c75f1b7000d9e888a33af294c35/numpy-1.16.6-cp27-cp27mu-linux_aarché4.whl
Collecting cycler>=0.10
Downloading cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)
Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1
Downloading pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)
| I | 67 kB 17.1 MB/s
Collecting python-dateutil>=2.1
Downloading python_dateutil-2.9.0.post@-py2.py3-none-any.whl (229 kB)
| I | 229 kB 59.6 MB/s
Collecting pytz
Downloading pytz-2024.1-py2.py3-none-any.whl (505 kB)
| I | 505 kB 43.0 MB/s
Requirement already satisfied: six>=1.10 in /usr/local/lib/python2.7/site-packages (from matplotlib) (1.14.0)
Collecting kiwisolver>=1.0.1
Downloading kiwisolver-1.1.0.tar.gz (30 kB)
Collecting backports.functools_lru_cache
Downloading backports.functools_lru_cache-1.6.6-py2.py3-none-any.whl (5.9 kB)
Collecting subprocess32
Downloading subprocess32-3.5.4.tar.gz (97 kB)
| I | 07 kB 23.8 MB/s
Requirement already satisfied: setuptools in /usr/local/lib/python2.7/site-packages (from kiwisolver>=1.0.1->matplotlib) (44.1.0)
Building wheels for collected packages: matplotlib, kiwisolver, subprocess32
Building wheel for matplotlib (setup.py) ... done
Created wheel for matplotlib: filename=matplotlib-2.2.5-cp27-cp27mu-linux_aarché4.whl size=10693452 sha256=0dfbla88cdaa4s196877e46ddbl122dfdea95241b497d9a06b7f74e78e2d76328¢c
Stored in directory: /root/.cache/pip/wheels/20/af/9f/bcabe52dc48188e4068752906758846bd9dfeac4es80d24218
Building wheel for kiwisolver (setup.py) ... done
Created wheel for kiwisolver: filename=kiwisolver-1.1.0-cp27-cp27mu-linux_aarché4.whl size=959361 sha256=2c48a01721b1d7d107ddaa2a45fc68b5f0727dff14f87f5b58ebb6670ebeallbs
Stored in directory: /root/.cache/pip/wheels/80/b4/b8/99e51e2ccaadfdf828c133caleb24cbb737a06ad343d112978
Building wheel for subprocess32 (setup.py) ... done
Created wheel for subprocess32: filename=subprocess32-3.5.4-cp27-cp27mu-linux_aarché64.whl size=50848 sha256=3c591ad7c85a91cc2a9dlecdbeeal30621694302c89cel3a32204d5829b238f3f
Stored in directory: /root/.cache/pip/wheels/e3/c7/6a/434fc8f2936acc4964ded8478435a8ef7¢c69eb41df7007a49f
Successfully built matplotlib kiwisolver subprocess32
Installing collected packages: numpy, cycler, pyparsing, python-dateutil, pytz, kiwisolver, backports.functools-lru-cache, subprocess32, matplotlib
Successfully installed backports.functools-lru-cache-1.6.6 cycler-0.10.0 kiwisolver-1.1.0 matplotlib-2.2.5 numpy-1.16.6 pyparsing-2.4.7 python-dateutil-2.9.0.post@ pytz-2024.1 subproce
$s32-3.5.4
WARNING: You are using pip version 20.0.2; however, version 20.3.4 is available.
You should consider upgrading via the '/usr/local/bin/python -m pip install --upgrade pip' command.
nmalavasi@Pga-1t7982 ~ %

Example: Python2.7

Mounting a volume

nmalavasi@ga-1t7982 ~ % docker exec -it py_c python /place_of_script/example_script_simple.py

2.2.5
Hello world
nmalavasi®Pga-1t7982 ~ %

Conclusions

* \ery easy to switch between containers (e.g. ubuntu/Python2.7).
* \We can have our installation ready in minutes without too much trouble.

 Powerful way to have our code working.

