
Nicola Malavasi - Marie Curie Fellow @ MPE - 16/04/2024

Part two
Dockerfiles. 
How to create your image from scratch.



Creating your own image

It may happen that the image you need is not on Docker Hub or that you want 
to create your own image.


Docker allows you to do this via a script: a Dockerfile 

Essentially a Dockerfile is a script where you start from an existing image, you modify it 
adding features, and you create a new image out of it to use for a container.


Images are immutable once created: if software is added to an existing image a new one 
needs to be created.


Inefficient to install software at container stage: once container is deleted, sofware is lost 
and needs to be reinstalled in new container.



First steps with containers

Actions:


• Image pull: download a pre-made image from a registry.


• Image build: create image from scratch.


• Container start: start a container from an image (i.e. a contained process in an 
environment set by an image).


• Container run/exec: execute a command in a container.


• Container stop: stop a container.

Actions:


• Image build: create image from scratch.




Dockerfile example

This already constitutes a basic Dockerfile: takes Python as base image and installs 
matplotlib via pip. The new image created will have both.



Building from Dockerfile

docker build -t pm_i -f ./Dockerfile_python_pip .



Building from Dockerfile

docker build -t pm_i -f ./Dockerfile_python_pip .

Command.



Building from Dockerfile

docker build -t pm_i -f ./Dockerfile_python_pip .

Custom name for the image.

Command.



Building from Dockerfile

docker build -t pm_i -f ./Dockerfile_python_pip .

Custom name for the image.

Command.

Name of the Dockerfile to build from.

If not given defaults to Dockerfile (no extension).



Building from Dockerfile

docker build -t pm_i -f ./Dockerfile_python_pip .

Custom name for the image.

Command.

Name of the Dockerfile to build from.

If not given defaults to Dockerfile (no extension).

Working directory.



Building from Dockerfile

The new 
image is 

created via 
“docker 
build” 

(specifying 
file name if 
needed).



Building from Dockerfile

The new 
image is 

created via 
“docker 
build” 

(specifying 
file name if 
needed).



Useful keywords

• FROM: uses existing image as base


• RUN: executes a command


• ENV: sets environmental variable


• COPY: copies local files inside image (useful e.g. for source code)


• USER: sets user information to be used when container is created from image 
(otherwise user is root!)


• WORKDIR: sets working directory


• CMD: sets the command that is executed when container is created from image

Dockerfile reference: https://docs.docker.com/reference/dockerfile/



FROM
FROM allows you to select the starting “base” image. Only one FROM statement for Dockerfile. 


It will pull the image from Docker Hub and execute the next steps of the build inside that image.



Useful keywords

• FROM: uses existing image as base


• RUN: executes a command


• ENV: sets environmental variable


• COPY: copies local files inside image (useful e.g. for source code)


• USER: sets user information to be used when container is created from image 
(otherwise user is root!)


• WORKDIR: sets working directory


• CMD: sets the command that is executed when container is created from image

Dockerfile reference: https://docs.docker.com/reference/dockerfile/



RUN

RUN executes a command. It can be any 
command that is accepted within the current OS/

environment of the image.


E.g. in linux image linux commands will be 
executed, provided software is installed.



Useful keywords

• FROM: uses existing image as base


• RUN: executes a command


• ENV: sets environmental variable


• COPY: copies local files inside image (useful e.g. for source code)


• USER: sets user information to be used when container is created from image 
(otherwise user is root!)


• WORKDIR: sets working directory


• CMD: sets the command that is executed when container is created from image

Dockerfile reference: https://docs.docker.com/reference/dockerfile/



ENV
ENV sets the value of an environmental variable



Useful keywords

• FROM: uses existing image as base


• RUN: executes a command


• ENV: sets environmental variable


• COPY: copies local files inside image (useful e.g. for source code)


• USER: sets user information to be used when container is created from image 
(otherwise user is root!)


• WORKDIR: sets working directory


• CMD: sets the command that is executed when container is created from image

Dockerfile reference: https://docs.docker.com/reference/dockerfile/



COPY

COPY copies files from a local 
folder to inside the image. 
These files will be available 

within the containers run from 
that image.



Useful keywords

• FROM: uses existing image as base


• RUN: executes a command


• ENV: sets environmental variable


• COPY: copies local files inside image (useful e.g. for source code)


• USER: sets user information to be used when container is created from image 
(otherwise user is root!)


• WORKDIR: sets working directory


• CMD: sets the command that is executed when container is created from image

Dockerfile reference: https://docs.docker.com/reference/dockerfile/



USER
By default, unless specified otherwise, all commands at image creation are run as 

root (WITHIN the image). USER allows to switch to a different user (if it exists). There 
is no going back afterwards.



Useful keywords

• FROM: uses existing image as base


• RUN: executes a command


• ENV: sets environmental variable


• COPY: copies local files inside image (useful e.g. for source code)


• USER: sets user information to be used when container is created from image 
(otherwise user is root!)


• WORKDIR: sets working directory


• CMD: sets the command that is executed when container is created from image

Dockerfile reference: https://docs.docker.com/reference/dockerfile/



WORKDIR
Sets the current working directory.



Useful keywords

• FROM: uses existing image as base


• RUN: executes a command


• ENV: sets environmental variable


• COPY: copies local files inside image (useful e.g. for source code)


• USER: sets user information to be used when container is created from image 
(otherwise user is root!)


• WORKDIR: sets working directory


• CMD: sets the command that is executed when container is created from image

Dockerfile reference: https://docs.docker.com/reference/dockerfile/



CMD
If present, this command is executed when a container is created. There can be only one CMD instruction.



Nicola Malavasi - Marie Curie Fellow @ MPE - 16/04/2024

Part three
Exercise. 
Create your Dockerfile and install your code.



Exercise suggestion
Simple

• Pull image and start container: ubuntu, python, any other language you are 
comfortable with.


• Pull image and start three containers: experiment with starting and stopping 
them, switch from one to the other or experience running them in parallel.



Exercise suggestion
Intermediate

• Pull image, start container, execute command in container.


• Bind mount volume into container, experiment with file input and output from 
container to local folder.



Exercise suggestion
Advanced

• Do you have a code to install? Write a Dockerfile for it, test it by running a 
container.


• Do you have a sample analysis? Bind mount a volume to your newly created 
container, test software execution with input/output.


• Write a Dockerfile for a generic software (e.g. python? Other language?). Start 
from a base image, add on top to it. Set environmental variables, change the 
user and see how it is reflected in the container.


• Try to add a command to it.


