Part four

Tips and tricks to optimize container creation.

Nicola Malavasi - Marie Curie Fellow @ MPE - 16/04/2024

TIENS

A

10 101 10%%1 g A
ERTARA I
Wit MIARIE CURIE

Main problems of image creation

The two main bottlenecks of image creation from Dockerfile are the time required to
build the image and the memory size of the image.

Memory size can be up to a few GB.
Both are dependent on what is installed inside the image at creation.

nmalavasi@Pga-1t7982 tutorial_material % docker image 1ls

REPOSITORY TAG IMAGE ID CREATED SIZE
debian latest 5c2e61cl2a®3 39 hours ago 139MB
python 3.11.9-bookworm c9a42713a959 8 days ago 1.01GB

ubuntu latest 2b7cc08dcdbb 6 weeks ago 69.2MB
nmalavasi@Pga-1t7982 tutorial_material %

Example

Package installation in Python

Consider the following Dockerfile. End result is python installation with a few packages.

Users > nmalavasi > Desktop > PUNCH_useful
| # syntax=docker/dockerfile:1

maLldl L 1100 Py Lhol dmayl

FROM python:3.11.9-bookworm

»‘:,"- 1S ¢ - 0 | () '_ U _._1 1S i_ c |,_ L nato ’ 07 L _‘_ l

RUN pip install matplotlib

RUN pip install astropy
RUN pip install numpy

RUN pip install scipy

Example

Package installation in Python

Consider the following Dockerfile. End result is python installation with a few packages.

Users > nmalavasi > Deskis®g™> PUNCH_useful pythOn image
| # syntax=dogaer/docksrille:1l

| L ! 2111 vV LI

FROM python:3.11.9-bookworm

python version

—J J - ‘— ‘ | l 4 | ——H:

RUN pip install matplotlib OS version
RUN pip install astropy

RUN pip install numpy

RUN pip install scipy

Example

Package installation in Python

Consider the following Dockerfile. End result is python installation with a few packages.

Users > nmalavasi > Desktop > PUNCH_useful
| # syntax=docker/dockerfile:1

maLldl L 1100 Py Lhol dmayl

FROM python:3.11.9-bookworm

»‘:,"- 1S ¢ - 0 | () '_ U _._1 1S i_ c |,_ L nato ’ 07 L _‘_ l

RUN pip install matplotlib

RUN pip install astropy

Modules installed sequentially
RUN pip install numpy

RUN pip install scipy

Example

Package installation in Python

Consider the following Dockerfile. End result is python installation with a few packages.

Users > nmalavasi > Desktop > PUNCH_useful
| # syntax=docker/dockerfile:1

#Start from python 1image Final Size iS abO Ut 1 5 GB
FROM python:3.11.9-bookworm

* Python is installed on top of full OS installation:

#Use pip to install matplotlib we don’t need all of this if we are just going to
RUN pip install matplotlib

use python.

RUN pip install t : : yn
P ARG P « Each RUN command is a layer (i.e. an additional

A0 [S ST intermediate step in image creation). Each layer

takes memory.
RUN pip install scipy

Example

Package installation in Python
Compare with the following. End result is same as before.

* We use “slim” version of OS: only

syntax=docker/dockerfile:1 necessary packages for python
Installation.

#Start from python 1image

FROM python:3.11.9-slim-bookworm Packages are installed in same

command: only one layer.

#Use pip to install matplot|

AT LE C N B S LEEE AT ST « Clean pip cache: once packages are
installed they can be used, no need to
RUN python -m pip cache purge keep them in cache (installation won’t
be repeated within same container
use).

Example

Package installation in Python
Compare with the following. End result is same as before.

* We use “slim” version of OS: only

syntax=docker/dockerfile:1 necessary packages for python
Installation.

#Start tTrom python 1mage

FROM python:3.11.9£slim)bookworm Packages are installed in same

command: only one layer.

#Use pip to install matplot!

AT LE C N B S LEEE AT ST « Clean pip cache: once packages are
installed they can be used, no need to
RUN python -m pip cache purge keep them in cache (installation won’t
be repeated within same container
use).

Example

Comparison of light and heavy images

The difference in memory use can be large.

nmalavasi@Pga-1t7982 tutorial material % docker image 1ls
REPOSITORY TAG IMAGE ID CREATED SIZE
python_small latest 724bbbcacfl 16 hours ago 612MB

python_large latest 82da345bcbe4 16 hours ago 1.47GB
nmalavasiPga-1t7982 tutorial material %

Common practices to optimize containers

Essentially: memory use reduction
 Be mindful of installed code: install only needed libraries, reduce what you
install to the bare minimum needed.

 Number of layers increases size: bundle commands when possible (e.g. apt-
get update, install, clean).

 Choose correct starting image: use “slim” images if you don’t need full OS
functionality.

 Clean up after installation: clear apt-get and pip caches, remove tarballs.

Multi-stage builds

It Is possible to use an image as a base for further image creation also within the same
Dockerfile.

Bring over only
the software
needed to install
software in part 3.

Image 2

i Install further software.
Brmg over Oﬂ|y nstall further software

the software
needed to install Image 3
software in part 2 Install further software.

Only image 3 is kept, others are deleted.

Users > nmalavasi > Desktop > arcane_dockerfiles > OTF_pointing_correction_container > # Dockerfile > ...
syntax=docker/dockerfile:1

FROM python:3.8.16-slim-bullseye as builder

RUN apt-get update && apt-get -y install wget xz-utils git time

RUN wget https://casa.nrao.edu/download/distro/casa/release/rhel/casa-6.5.2-26-py3.8.tar.xz

RUN tar -xvf casa-6.5.2-26-py3.8.tar.xz

RUN mkdir requirements_Tfolder

18 \ te]
RUN git clone https://github.com/rstofi/arcane_suite.git

WORKDIR /arcane _sulte
RUN git checkout d7d3941c03375b3efa7cc2711834462c812473ad

RUN pip3 install —target=/requirements_folder -r ./requirements.txt

FROM kernsulte/base:7 as runner

RUN docker-apt-install python3-casacore chgcentre

COPY ==from=builder /requirements_folder /usr/local/src/

COPY ==from=builder /requirements_folder/bin /fusr/bin/

COPY ==from=builder /casa-6.5.2-26-py3.8 /usr/local/src/casa_from_container/
COPY ==from=builder /arcane suite /usr/local/src/arcane_suite/

RUN apt-get update && apt-get -y install python-is-python3 graphviz python3-pydot python3-pip
ENV.PYTHONPATH=$PYTHONPATH:/usr/local/src

RUN Iln -s /usr/bin/python3.8 /usr/local/bin/python

RUN ln =-s fusr/local/src/casa from container/bin/casa /usr/local/bin/casa

WORKDIR /usr/local/src/arcane_ﬁuite

RUN pip3 install -e ./

Part five

Apptainer.
Container use in C4P.

Nicola Malavasi - Marie Curie Fellow @ MPE - 16/04/2024

TIENS

A

10 101 10%%1 g A
EAVTIRAEN
Wit MIARIE CURIE

Apptainer

Docker Is not the only container engine. Another widely used is Apptainer.
Effectively available only on linux.

Same principle as Docker: can pull/create images, has own version of Dockerfile and
syntax, runs processes In isolated way.

,
A APPTAINER

Apptainer vs Docker

Apptainer vs Docker

Integration to host Complete isolation from host

Apptainer vs Docker

Integration to host Complete isolation from host

* User inside container is completely

* Process is run as current user. USER independent of user outside.

keyword of Dockerfile Is ignored.

Apptainer vs Docker

Integration to host

* Process is run as current user. USER
keyword of Dockerfile Is ignored.

* |nside container host file system is still
visible (less need for bind mounts).

Complete isolation from host

* User inside container is completely
iIndependent of user outside.

* Filesystem inside and outside container
are disconnected. Strong need for bind
mounts.

Apptainer vs Docker

Integration to host Complete isolation from host

* User inside container is completely

* Process is run as current user. USER independent of user outside.

keyword of Dockerfile Is ignored.

* Filesystem inside and outside container
are disconnected. Strong need for bind
mounts.

* |nside container host file system is still
visible (less need for bind mounts).

* |mage saved as .sif file on host system,

* Image saved in non user-friendly place
easy to transfer.

and way.

Apptainer vs Docker

Integration to host Complete isolation from host

* User inside container is completely

* Process is run as current user. USER independent of user outside.

keyword of Dockerfile Is ignored.

* Filesystem inside and outside container
are disconnected. Strong need for bind
mounts.

* |nside container host file system is still
visible (less need for bind mounts).

* |mage saved as .sif file on host system,

* Image saved in non user-friendly place
easy to transfer.

and way.

* No root privilege is needed to create

. * Root privilege is needed to create
iImage.

Image.

AR

Apptainer and Docker

Creating Apptainer images and containers from Dockerfiles

* Apptainer can run containers in Docker images

* Apptainer can create images from Dockerfiles

Only the first aspect is needed for C4P.

. Write Dockerfile

. Create image from Dockerfile with Docker

Have Apptainer read image from Docker daemon and convert it to .sif file

Run Apptainer container in Apptainer image

Apptainer and Docker

Creating Apptainer images and containers from Dockerfiles

1. Write Dockerfile
. Create image from Dockerfile with Docker

Have Apptainer read image from Docker daemon and convert it to .sif file

AR

Run Apptainer container in Apptainer image apptainer run apptainer exec

apptainer build filename.sif docker-daemon:image_name:image_tag

Apptainer and Docker

Creating Apptainer images and containers from Dockerfiles

1. Write Dockerfile
Create image from Dockerfile with Docker

Have Apptainer read image from Docker daemon and convert it to .sif file

I

Run Apptainer container in Apptainer image apptainer run apptainer exec

apptainer build|filename.sif docker-daemon:image_name:image_tag

Same as Docker

Apptainer and Docker

Creating Apptainer images and containers from Dockerfiles

1. Write Dockerfile
Create image from Dockerfile with Docker

Have Apptainer read image from Docker daemon and convert it to .sif file

I

Run Apptainer container in Apptainer image apptainer run apptainer exec

apptainer build|filename.sif|docker-daemon:image_name:image_tag

Same as Docker sif file

Apptainer and Docker

Creating Apptainer images and containers from Dockerfiles

1. Write Dockerfile
Create image from Dockerfile with Docker

Have Apptainer read image from Docker daemon and convert it to .sif file

I

Run Apptainer container in Apptainer image apptainer run apptainer exec

apptainer build|filename.sif|docker-daemortimage_name:image_tag

1 1 y
Image Is currently

Same as Docker sif file sitting in the Docker
iImage list

Apptainer and Docker

Creating Apptainer images and containers from Dockerfiles

1. Write Dockerfile
. Create image from Dockerfile with Docker

Have Apptainer read image from Docker daemon and convert it to .sif file

SNSRI

Run Apptainer container in Apptainer image apptainer run apptainer exec

apptainer build|filename.sif|docker-daemortimage_name:image_tag
A
T T Image Is currently T

Same as Docker Sif file sitting in the Docker Image name
Image list

Container use in C4P

 Compute4dPUNCH builds images via Docker and runs containers in them via Apptainer.

* Process is automated, only needed input is Dockerfile.

Add Dockerfile to C4P Add image name to CVMFS

Write Dockerfile — container stack repository. m————————————ly- image list.

: : : Jobs are run in container
Trigger image creation. :
created from image.

Container use in C4P

Add image name to CVMFS

Add Dockerfile to C4P ;)
Image list.

Write Dockerfile —) container stack repository. : :
: : : Jobs are run in container
Trigger image creation.)
created from image.

 Write Dockerfile, Fork correct Be mindful of
test image repository. resources used,
creation locally keep container
with Docker. Add Dockerfile. size small and

simple.

e Make sure it * Make sure Cl/
works in CD pipeline runs * After the image is
Apptainer too to completion. in CVMFS is very
(isolation vs difficult to change

 Feedback from it: test before you

integration...). C4P developers! go through!

From C4P section in PUNCH website

Create your own Singularity Container

Currently the best way to get your software environment running on Compute4PUNCH is to build your own singularity container with your favorite
OS and containing your software installation.

You have to do that in the following way.

e Fork https://gitlab-p4n.aip.de/compute4punch/container-stacks into your account

e Create a feature branch and put your Dockerfile and stuff into a meaningful sub-directory
e Submit a merge request, once the Cl pipeline runs successful

¢ Letthe Compute4PUNCH team know, when it is ready to be reviewed

Afterwards the new container, which has been to automatically uploaded to the registry at AIP has to be put into https://github.com/cvmfs/images-
unpacked.cern.ch via a pull request.

The recipe.yaml inside this repository contains already several available C4P containers. Once merged it will take sometime (~1 hour) until it will
appearin

/cvmfs/unpacked.cern.ch/gitlab-p4n.aip.de\:5005/computed4punch/container-stacks/

on the login node and you can submit jobs.

