
Nicola Malavasi - Marie Curie Fellow @ MPE - 16/04/2024

Part four
Tips and tricks to optimize container creation.



Main problems of image creation
The two main bottlenecks of image creation from Dockerfile are the time required to 

build the image and the memory size of the image.


Memory size can be up to a few GB.


Both are dependent on what is installed inside the image at creation.



Example
Package installation in Python

Consider the following Dockerfile. End result is python installation with a few packages.



Example
Package installation in Python

Consider the following Dockerfile. End result is python installation with a few packages.

python image

python version

OS version



Example
Package installation in Python

Consider the following Dockerfile. End result is python installation with a few packages.

Modules installed sequentially



Example
Package installation in Python

Consider the following Dockerfile. End result is python installation with a few packages.

Final size is about 1.5 GB


• Python is installed on top of full OS installation: 
we don’t need all of this if we are just going to 
use python.


• Each RUN command is a layer (i.e. an additional 
intermediate step in image creation). Each layer 
takes memory.



Example
Package installation in Python
Compare with the following. End result is same as before.

• We use “slim” version of OS: only 
necessary packages for python 
installation.


• Packages are installed in same 
command: only one layer.


• Clean pip cache: once packages are 
installed they can be used, no need to 
keep them in cache (installation won’t 
be repeated within same container 
use).



Example
Package installation in Python
Compare with the following. End result is same as before.

• We use “slim” version of OS: only 
necessary packages for python 
installation.


• Packages are installed in same 
command: only one layer.


• Clean pip cache: once packages are 
installed they can be used, no need to 
keep them in cache (installation won’t 
be repeated within same container 
use).



Example
Comparison of light and heavy images

The difference in memory use can be large.



Common practices to optimize containers
Essentially: memory use reduction

• Be mindful of installed code: install only needed libraries, reduce what you 
install to the bare minimum needed.


• Number of layers increases size: bundle commands when possible (e.g. apt-
get update, install, clean).


• Choose correct starting image: use “slim” images if you don’t need full OS 
functionality.


• Clean up after installation: clear apt-get and pip caches, remove tarballs.



Multi-stage builds
It is possible to use an image as a base for further image creation also within the same 

Dockerfile.
Image 1 

Install libraries and 
software.

Image 2 
Install further software.

Image 3 
Install further software.

Bring over only 
the software 

needed to install 
software in part 2.

Bring over only 
the software 

needed to install 
software in part 3.

Only image 3 is kept, others are deleted. 







Nicola Malavasi - Marie Curie Fellow @ MPE - 16/04/2024

Part five
Apptainer. 
Container use in C4P.



Apptainer

Docker is not the only container engine. Another widely used is Apptainer.


Effectively available only on linux.


Same principle as Docker: can pull/create images, has own version of Dockerfile and 
syntax, runs processes in isolated way.



Apptainer vs Docker



Apptainer vs Docker

Integration to host Complete isolation from host



Apptainer vs Docker

Integration to host

• Process is run as current user. USER 
keyword of Dockerfile is ignored.

Complete isolation from host

• User inside container is completely 
independent of user outside.



Apptainer vs Docker

Integration to host

• Process is run as current user. USER 
keyword of Dockerfile is ignored.

• Inside container host file system is still 
visible (less need for bind mounts).

Complete isolation from host

• User inside container is completely 
independent of user outside.

• Filesystem inside and outside container 
are disconnected. Strong need for bind 
mounts.



Apptainer vs Docker

Integration to host

• Process is run as current user. USER 
keyword of Dockerfile is ignored.

• Inside container host file system is still 
visible (less need for bind mounts).

• Image saved as .sif file on host system, 
easy to transfer.

Complete isolation from host

• User inside container is completely 
independent of user outside.

• Filesystem inside and outside container 
are disconnected. Strong need for bind 
mounts.

• Image saved in non user-friendly place 
and way.



Apptainer vs Docker

Integration to host

• Process is run as current user. USER 
keyword of Dockerfile is ignored.

• Inside container host file system is still 
visible (less need for bind mounts).

• Image saved as .sif file on host system, 
easy to transfer.

• No root privilege is needed to create 
image.

Complete isolation from host

• User inside container is completely 
independent of user outside.

• Filesystem inside and outside container 
are disconnected. Strong need for bind 
mounts.

• Image saved in non user-friendly place 
and way.

• Root privilege is needed to create 
image.



Apptainer and Docker
Creating Apptainer images and containers from Dockerfiles

• Apptainer can run containers in Docker images


• Apptainer can create images from Dockerfiles

Only the first aspect is needed for C4P.

1. Write Dockerfile


2. Create image from Dockerfile with Docker


3. Have Apptainer read image from Docker daemon and convert it to .sif file


4. Run Apptainer container in Apptainer image



Apptainer and Docker
Creating Apptainer images and containers from Dockerfiles

1. Write Dockerfile


2. Create image from Dockerfile with Docker


3. Have Apptainer read image from Docker daemon and convert it to .sif file


4. Run Apptainer container in Apptainer image

apptainer build filename.sif docker-daemon:image_name:image_tag

apptainer run apptainer exec



Apptainer and Docker
Creating Apptainer images and containers from Dockerfiles

1. Write Dockerfile


2. Create image from Dockerfile with Docker


3. Have Apptainer read image from Docker daemon and convert it to .sif file


4. Run Apptainer container in Apptainer image

apptainer build filename.sif docker-daemon:image_name:image_tag

apptainer run apptainer exec

Same as Docker



Apptainer and Docker
Creating Apptainer images and containers from Dockerfiles

1. Write Dockerfile


2. Create image from Dockerfile with Docker


3. Have Apptainer read image from Docker daemon and convert it to .sif file


4. Run Apptainer container in Apptainer image

apptainer build filename.sif docker-daemon:image_name:image_tag

apptainer run apptainer exec

Same as Docker .sif file



Apptainer and Docker
Creating Apptainer images and containers from Dockerfiles

1. Write Dockerfile


2. Create image from Dockerfile with Docker


3. Have Apptainer read image from Docker daemon and convert it to .sif file


4. Run Apptainer container in Apptainer image

apptainer build filename.sif docker-daemon:image_name:image_tag

apptainer run apptainer exec

Same as Docker .sif file
Image is currently 

sitting in the Docker 
image list



Apptainer and Docker
Creating Apptainer images and containers from Dockerfiles

1. Write Dockerfile


2. Create image from Dockerfile with Docker


3. Have Apptainer read image from Docker daemon and convert it to .sif file


4. Run Apptainer container in Apptainer image

apptainer build filename.sif docker-daemon:image_name:image_tag

apptainer run apptainer exec

Same as Docker .sif file
Image is currently 

sitting in the Docker 
image list

Image name



Container use in C4P

• Compute4PUNCH builds images via Docker and runs containers in them via Apptainer.


• Process is automated, only needed input is Dockerfile.

Write Dockerfile
Add Dockerfile to C4P 

container stack repository. 
Trigger image creation.

Add image name to CVMFS 
image list. 

Jobs are run in container 
created from image.



Container use in C4P

• Write Dockerfile, 
test image 
creation locally 
with Docker.


• Make sure it 
works in 
Apptainer too 
(isolation vs 
integration…).

• Fork correct 
repository.


• Add Dockerfile.


• Make sure CI/
CD pipeline runs 
to completion.


• Feedback from 
C4P developers!

• Be mindful of 
resources used, 
keep container 
size small and 
simple.


• After the image is 
in CVMFS is very 
difficult to change 
it: test before you 
go through!

Write Dockerfile
Add Dockerfile to C4P 

container stack repository. 
Trigger image creation.

Add image name to CVMFS 
image list. 

Jobs are run in container 
created from image.



From C4P section in PUNCH website


