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Exact results for 
cusped Wilson loops
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J. M. Henn, IAS

Wilson loops:
required for gauge invariance of non-local objects

contain local operators
P: path ordering

gauge dynamics - Wilson loops of arbitrary shapes

 (x1)
WC [x1, x2] W

C

[x1, x2] = Pe

R
C dxµA

µ

⇠ 1 + �µ⌫Fµ⌫ + . . .

gauge group SU(N)Aµ =
N2�1X

a=1

Aµ
a t

a
ij

L =
1

4
Tr

Z
Fµ⌫F

µ⌫ , Fµ⌫ = @µA⌫ � @⌫Aµ + ig[Aµ, A⌫ ]

Monday, April 16, 12



J. M. Henn, IAS

Understanding of structure of Yang-Mills
Exactly solvable gauge theory in four dimensions?

Dualities with string theories

• technically very similar

QCD and supersymmetric Yang-Mills theories

• elegant supersymmetry methods

J. Henn On gluon scattering amplitudes SFB talk April 28, 2009 - p. 2/18

Motivation and outline

✔ tree-level gluon scattering amplitudes in Yang-Mills theory

number of external gluons 4 5 6 7 8 9 10
number of diagrams 4 25 220 2485 34300 559405 10525900

Questions we want to ask:

✔ can we compute tree-level amplitudes for an arbitrary number of gluons?

✔ what are the symmetry properties of the amplitudes?

e.g. all Yang-Mills tree amplitudes Drummond, JMH 2008
Dixon, Plefka, JMH, Schuster, 2010

Dual conformal / Yangian symmetry
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AdS/CFT correspondence

J. M. Henn, IAS

dual string theory 
description on AdS_5

N=4 SYM
SU(N) gauge theory

scalars+fermions
conformal

� = g2YMN

� ⌧ 1 � � 1

Gauge Theory - String Theory Dictionary of Observables

∆a(λ) spectrum of
scaling dimensions

⇔ E (λ) string excitation
spectrum

solved (?)

An({pi , hi , ai};λ) (⇔) open string amps

Wilson loop WC ⇔ minimal surface

[4/26]

Wilson loop

minimal surface

W [C]

Feynman diagrams
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Outline of talk

J. M. Henn, IAS

• Introduction: cusped anomalous dimension
and physical motivation

• Part 2:  Three-loop result, 
              new limit, Schrödinger problem

• Part 1:  Exact result at small angles

• Part 3:  relation to Regge limit of massive amplitudes
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Cusp anomalous dimension

J. M. Henn, IAS

governs ultraviolet (UV) divergences at cusp

�cusp(�,�, N)

hW i ⇠ e�| ln µUV
µIR

| �cusp

� = g2YMN

Wilson loop with cusp

�cusp

Polyakov; Brandt, Neri, Sato
Korchemsky & Radyushkin ’87

cos(�) =
p · qp
p2q2

This quantity B also determines the energy emitted by a moving quark

�E = 2⇡B � dt(v̇)2 (5)

in the small velocity limit. The result for any velocity can be obtained by performing a

boost and it is the same old formula that one has in electrodynamics, up to the replacement
2e

2

3

→ 2⇡B, see [11] for a discussion at strong coupling. Its appearance in (5) is what

prompted us to call it the Bremsstrahlung function.

� �

(a) (b)
S3

Figure 1: (a) A Wilson line that makes a turn by an angle �. (b) Under the plane to cylinder

map, the same line is mapped to a quark anti-quark configuration. The quark and antiquark

are sitting at two points on S3 at a relative angle of ⇡ − �. Of course, they are extended

along the time direction.

The cusp anomalous dimension is an interesting quantity that is related to a variety of

physical observables as particular cases.

Originally it was defined in [12] as the logarithmic divergence that arises for a Wilson

loop operator when there is a cusp in the contour. A cusp is a region where a straight line

makes a sudden turn by an angle �, see figure 1(a). In that case the Wilson loop develops a

logarithmic divergence of the form

�W � ∼ e−�cusp(�,�) log L
✏̃ (6)

where L is an IR cuto↵ and ✏̃ a UV cuto↵. One can also consider the continuation � = i' so

that now ' is a boost angle in Lorentzian signature.

�
cusp

is related to a variety of physical observables:

• It characterizes the IR divergences that arise when we scatter massive colored particles

in the planar limit. Here ' is the boost angle between two external massive particle

3

similar to anomalous dimensions of composite operators
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Physical relevance of         

J. M. Henn, IAS

• similarly for massive form factors (e.g Isgur-Wise)

�cusp

• IR divergences of massive amplitudes

A ⇠ e�| log µIR|�cusp

resummation of soft divergences

�⇤

Korchemsky, Radyushkin;
Becher, Neubert 

See Magnea’s talk

massless 3-loop form factors:
see Huber’s talk

Monday, April 16, 12



Limits and relations of

J. M. Henn, IAS

• vanishes at zero angle
   (straight line)

• anomalous dimensions 
  of large spin operators

• quark-antiquark potential

lim
'!1

�cusp(i',�) ⇠ '�cusp(�)

�cusp(� = 0,�) = 0

known due to Beisert, 
Eden, Staudacher eq

integrability!

� = ⇡ � � � ⌧ 1

�cusp ⇠ C

�
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J. M. Henn, IAS

Wilson loops in supersymmetric theories

Tr(Pe
R
dsA

µ
ẋµ+ds ni�

i

)

• path-dependent coupling

This quantity B also determines the energy emitted by a moving quark

�E = 2⇡B � dt(v̇)2 (5)

in the small velocity limit. The result for any velocity can be obtained by performing a

boost and it is the same old formula that one has in electrodynamics, up to the replacement
2e

2

3

→ 2⇡B, see [11] for a discussion at strong coupling. Its appearance in (5) is what

prompted us to call it the Bremsstrahlung function.

� �

(a) (b)
S3

Figure 1: (a) A Wilson line that makes a turn by an angle �. (b) Under the plane to cylinder

map, the same line is mapped to a quark anti-quark configuration. The quark and antiquark

are sitting at two points on S3 at a relative angle of ⇡ − �. Of course, they are extended

along the time direction.

The cusp anomalous dimension is an interesting quantity that is related to a variety of

physical observables as particular cases.

Originally it was defined in [12] as the logarithmic divergence that arises for a Wilson

loop operator when there is a cusp in the contour. A cusp is a region where a straight line

makes a sudden turn by an angle �, see figure 1(a). In that case the Wilson loop develops a

logarithmic divergence of the form

�W � ∼ e−�cusp(�,�) log L
✏̃ (6)

where L is an IR cuto↵ and ✏̃ a UV cuto↵. One can also consider the continuation � = i' so

that now ' is a boost angle in Lorentzian signature.

�
cusp

is related to a variety of physical observables:

• It characterizes the IR divergences that arise when we scatter massive colored particles

in the planar limit. Here ' is the boost angle between two external massive particle

3

cos(�) =
p · qp
p2q2

cos(✓) = n · n0 , n2
= n02

= 1

pµ
qµ

ni

n0
i

• loop couples to scalars

six scalars �i

e.g.

• supersymmetry Zarembo

Maldacena; Rey

n = (1, 0, 0, 0, 0, 0) , n0
= (cos(✓), sin(✓), 0, 0, 0, 0)

�cusp(�, ✓,�, N)

�cusp(� = ±✓) = 0
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Outline of talk

J. M. Henn, IAS

• Introduction: cusped anomalous dimension
and physical motivation

• Part 2:  Three-loop result, 
              new limit, Schrödinger problem

• Part 1:  Exact result at small angles

• Part 3:  relation to Regge limit of massive amplitudes
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Part1: Exact result for

J. M. Henn, IAS

�cuspat small angles

�cusp = (�2 � ✓2)H(�,�, N) + . . .

�cusp(� = ±✓) = 0

• let us start with B(�, N) = H(0,�, N)

• need the coefficient of      :✓2 insertion of scalars

• idea: obtain            from known circular Wilson loop!

Correa, JMH, Maldacena, Sever

:modified Bessel function

Final result:
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J. M. Henn, IAS

Exact result interpolating between 
weak and strong coupling!
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3

6144⇡

2

�
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384⇡

2

√
�

4⇡

2 − 3

8⇡

2

�

B(�)

Figure 2: Plot of the Bremsstrahlung function B in the planar limit (solid blue curve). At

weak coupling, the lower and upper dashed green curves denote the two- and three-loop

approximation, respectively. It is interesting to note that the radius of convergence of the

weak coupling expansion is given by the first zero of I
1

in (4), which is at � ∼ −14.7. As one
can see in the plot, the perturbative formulas become unreliable in that region. At the same

time, we see that the first two orders of the strong coupling result (red dotted curve) give a

qualitatively good approximation starting from that region.

We will show below that

H(�,�) = 2�

1 − �

2

⇡

2

B(�̃) , �̃ = �(1 − �2

⇡2

) (29)

where B is the same Bremsstrahlung function we had before in (2).

In order to derive this formula we need to consider a class of 1/8 BPS Wilson loops

discussed in [5–10,25]. These are Wilson loops where the contour lives in an S2 subspace of

R4 or S4. These are BPS if the coupling to the scalars is chosen as follows. We consider a six

dimensional vector of the form �n = ( �m,0,0,0) where �m is a three dimensional unit vector. If

we call �x the three dimensional unit vector parametrizing the S2, then we choose

�m = �x × �̇x , (�x)2 = (�̇x)2 = 1, �̇x = d�x
dt

(30)

As conjectured in [5–7], shown in [8], and further discussed in [9, 10, 25], the result for

a non-intersecting Wilson loop of this kind is given by the answer for the ordinary circular

9

Correa, JMH, Maldacena, Sever

(exact N dependence also known)

``Bremsstrahlung function’’ B(�) , � = g2YMN
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J. M. Henn, IAS

Correa, JMH, Maldacena, Sever

H(�,�) =
2�

1� �2

⇡2

B(�̃) , �̃ = �(1� �2

⇡2
)

 H obtained by similar methods
   relating it to Wilson loops on S^2 

• perturbatively, H is a polynomial in �,⇡

• strong coupling H =

p
�

2

�q
1� �2

⇡2

agrees with formula extracted from
Drukker, Forini

Comments:

�cusp = (�2 � ✓2)H(�,�, N) + . . .

First deviation from supersymmetric case:

Monday, April 16, 12



Part 2 : structure of perturbative
results and ladder limit

J. M. Henn, IAS

Correa, JMH, Maldacena, Sever
⇠ =

cos ✓ � cos�

sin�

• uniform transcendentality
Li

n

(x) =

Z
x

0

dy

y

Li

n�1(y) , Li1(x) = � log(1� x)

�cusp = � ⇠ �

+ �2
⇥
⇠ �(⇡2 � �2) + ⇠2

�
Li3(e

2i�) + . . .
�⇤

+ �3
⇥
⇠�(⇡2 � �2)2 + ⇠2

�
Li5(e

2i�) + . . .
�
+ ⇠3

�
HPL(e2i�) + . . .

�⇤

• full 3-loop result:

• linear in     -  exactly known⇠

• highest term         from new limit

cf. QCD/N=4 SYM
transcendentality principle (KLOV)

�L⇠L ✓ ! i✓ , ✓ ! 1
limit selects ladders

HPL: harmonic polylogarithms: kernels
1

y
,

1

1� y
,

1

1 + y
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Ladders limit

J. M. Henn, IAS

Correa, JMH, Maldacena, Sever

• highest term         from new limit�L⇠L ✓ ! i✓ , ✓ ! 1
limit selects ladders

 Bethe-Salpeter equation

•        from ground-state energy of Schrödinger problem�cusp

�̂ ⇠ � ⇠

• exactly solvable for zero angle (Pöschl-Teller)

• iterative solution in coupling, or angle
• numerical solution
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Part 3 : Relation to Regge limit of 
massive amplitudes in N=4 SYM

J. M. Henn, IAS

Alday, JMH, Plefka, Schuster

N D3-branes

M D3-branes

z = 0

zi = 1/mi

(a)

p2 p3

p4p1

i2i2

i3

i3

i4i4

i1

i1

j k

(b)

Figure 1: (a) String theory description for the scattering of M gluons in the large N limit. Putting
the M D3-branes at different positions zi != 0 serves as a regulator and also allows us to exhibit dual
conformal symmetry. (b) Gauge theory analogue of (a): a generic scattering amplitude at large N (here:
a sample two-loop diagram).

moving M D3-branes away from the N parallel D3-branes and also separating these M distinct
branes from one another. One then has “light” gauge fields corresponding to strings stretching
between the M separated D3-branes, which are our external scattering states. Then there are
the “heavy” gauge fields corresponding to the strings stretching between the coincident N D3-
branes and one of the M branes. These are the massive particles running on the outer line of the
diagrams, see figure 1. In doing so, we argue that dual conformal symmetry, suitably extended to
act on the Higgs masses as well, is an exact, i.e. unbroken, symmetry of the scattering amplitudes.

This exact symmetry has very profound consequences. It was already noticed in [18] that
the integrals contributing to loop amplitudes in N = 4 SYM have very special properties under
dual conformal transformations, but this observation was somewhat obscured by the infrared
regulator. With our infrared regularisation, the dual conformal symmetry is exact and hence so
is the symmetry of the integrals. Therefore, the loop integrals appearing in our regularisation will
have an exact dual conformal symmetry. This observation severely restricts the class of integrals
allowed to appear in an amplitude. As a simple application, triangle sub-graphs are immediately
excluded.

The alert reader might wonder whether computing a scattering amplitude with several, dis-
tinct Higgs masses might not be hopelessly complicated. In fact, this is not the case. The
different masses are crucial for the exact dual conformal symmetry to work. However, once we
have used this symmetry in order to restrict the number of basis loop integrals, we can set all
Higgs masses equal and think about the common mass as a regulator. As we will show in several
examples, computing the small mass expansion in this regulator is particularly simple. In fact,

4

gauge theory string theory

• massive scattering amplitudes in N=4 SYM

Higgs mechanism
� �! h�i+ '
U(N +M) �! U(N)⇥ U(M)

�! U(N)⇥ U(1)M

• dual conformal symmetry (planar) 

p2i = �(mi �mi+1)
2

p

µ
i = x

µ
i � x

µ
i+1

isometries of AdS_5 space
Poincare coordinates
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J. M. Henn, IAS

JMH, Naculich, Spradlin, Schuster

• dual conformal symmetry

• relates two different physical pictures

Alday, JMH, Plefka, Schuster

Regge limit

(a) (b)

m

m

M

0

M−m

M M

M

M−m

M−m

M−m
m

m

m

m

m

m

0

00

0 0

Figure 2: Sample two-loop diagram contributing to the four-particle amplitude. Solid and

wavy lines denote massive and (almost) massless particles, respectively. The precise masses

are given by the labels. Dual conformal symmetry implies that the same function M(u, v)
describes two di↵erent physical situations: The Regge limit s→∞ of (a) is equivalent to the

Bhabha-type scattering (b), where the outer wavy lines have a small mass that regulates the

soft divergences.

In particular, it can be extracted from massive amplitudes on the Coulomb branch ofN = 4 SYM [5]. These amplitudes are obtained by giving a vacuum expectation value to

some of the scalars of N = 4 SYM. The string theory dual of this setup [18] suggests that

the amplitudes defined in this way have an exact dual conformal symmetry [4]. Consider

the four-scalar amplitude M with on-shell conditions p2
i

= −(h
i

− h
i+1)2, where h

i+4 ≡ h
i

.

Here h
i

are four nonzero eigenvalues of the Higgs fields, which we take to all point in the

same direction. The Mandelstam variables are s = (p
1

+ p
2

)2 and t = (p
2

+ p
3

)2. 1 A priori

the amplitude could depend on five dimensionless ratios built from the Poincaré invariants

s, t, h2

i

. Dual conformal symmetry implies that it is a function of two variables only,

M(s, t, h
1

, h
2

, h
3

, h
4

) =M(u, v) , (4)

where

u = h
1

h
3

s + (h
1

− h
3

)2 , v = h
2

h
4

t + (h
2

− h
4

)2 . (5)

u and v are invariant under dual conformal transformations. M(u, v) is known explicitly at

one loop, where it is given in terms of logarithms and dilogarithms. It is an interesting open

1We follow the −+++ metric conventions of ref. [4], so that s is negative for positive center of mass energy.

The amplitude will be real for s and t both positive.
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Figure 2: Sample two-loop diagram contributing to the four-particle amplitude. Solid and

wavy lines denote massive and (almost) massless particles, respectively. The precise masses

are given by the labels. Dual conformal symmetry implies that the same function M(u, v)
describes two di↵erent physical situations: The Regge limit s→∞ of (a) is equivalent to the

Bhabha-type scattering (b), where the outer wavy lines have a small mass that regulates the

soft divergences.

In particular, it can be extracted from massive amplitudes on the Coulomb branch ofN = 4 SYM [5]. These amplitudes are obtained by giving a vacuum expectation value to

some of the scalars of N = 4 SYM. The string theory dual of this setup [18] suggests that

the amplitudes defined in this way have an exact dual conformal symmetry [4]. Consider

the four-scalar amplitude M with on-shell conditions p2
i

= −(h
i

− h
i+1)2, where h

i+4 ≡ h
i

.

Here h
i

are four nonzero eigenvalues of the Higgs fields, which we take to all point in the

same direction. The Mandelstam variables are s = (p
1

+ p
2

)2 and t = (p
2

+ p
3

)2. 1 A priori

the amplitude could depend on five dimensionless ratios built from the Poincaré invariants

s, t, h2

i

. Dual conformal symmetry implies that it is a function of two variables only,

M(s, t, h
1

, h
2

, h
3

, h
4

) =M(u, v) , (4)

where

u = h
1

h
3

s + (h
1

− h
3

)2 , v = h
2

h
4

t + (h
2

− h
4

)2 . (5)

u and v are invariant under dual conformal transformations. M(u, v) is known explicitly at

one loop, where it is given in terms of logarithms and dilogarithms. It is an interesting open

1We follow the −+++ metric conventions of ref. [4], so that s is negative for positive center of mass energy.

The amplitude will be real for s and t both positive.

6

soft IR divergences, 
      ``Bhabha-scattering’’

•          :
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Summary and discussion

J. M. Henn, IAS

is interesting physical quantity�cusp(�, ✓,�, N)

• exact result for small angles

• new limit that selects ladders; Schrödinger problem

• full three-loop result

• relation to Regge limit of massive amplitudes

• QCD result at three loops?

• TBA equations from integrability Correa, Maldacena, Sever; Drukker

• systematics of                                    expansion⇠ = (cos ✓ � cos�)/ sin�
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Known circular Wilson loops

J. M. Henn, IAS

• circular Wilson loop known 

simple replacement (!)

• expansion in     determines 

Pestun

Drukker,
Gross

Drukker,
Giombi, 
Ricci,

Trancanelli

Ericksson, 
Semenoff,
Zarembo

• loop with non-trivial scalar profile also known

✓

B =

1

2⇡2
�@� loghWcircleiFinal result:

L: modified Laguerre polynomial
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