Exact results for cusped Wilson loops

Johannes M. Henn

Institute for Advanced Study, Princeton

with D. Correa, A. Sever, J. Maldacena

based on

arXiv:1202.4455 [hep-th]

arXiv:1203.1019 [hep-th]

$$\mathcal{L} = \frac{1}{4} \text{Tr} \int F_{\mu\nu} F^{\mu\nu} , \qquad F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} + ig[A^{\mu}, A^{\nu}]$$

$$A^{\mu} = \sum_{a=1}^{N^2 - 1} A^{\mu}_a \, t^a_{ij} \quad \text{gauge group SU(N)}$$

Wilson loops:

required for gauge invariance of non-local objects

$$\mathcal{O} = \Psi(x_1)W_C[x_1, x_2]\bar{\Psi}(x_2)$$

$$W_C[x_1, x_2] = Pe^{\int_C dx_\mu A^\mu}$$

P: path ordering

contain local operators

gauge dynamics - Wilson loops of arbitrary shapes

QCD and supersymmetric Yang-Mills theories

- technically very similar
- elegant supersymmetry methods

e.g. all Yang-Mills tree amplitudes

Dual conformal / Yangian symmetry

Drummond, JMH 2008 Dixon, Plefka, JMH, Schuster, 2010

Understanding of structure of Yang-Mills Exactly solvable gauge theory in four dimensions? Dualities with string theories

AdS/CFT correspondence

N=4 SYM
SU(N) gauge theory
scalars+fermions

dual string theory description on AdS_5

conformal

Wilson loop W[C]

Feynman diagrams

$$\lambda \ll 1$$

minimal surface

$$\lambda \gg 1$$

$$\lambda = g_{YM}^2 N$$

Outline of talk

- Introduction: cusped anomalous dimension Γ_{cusp} and physical motivation
- Part I: Exact result at small angles
- Part 2: Three-loop result, new limit, Schrödinger problem
- Part 3: relation to Regge limit of massive amplitudes

Cusp anomalous dimension

Wilson loop with cusp

$$\cos(\phi) = \frac{p \cdot q}{\sqrt{p^2 q^2}}$$

$\Gamma_{\rm cusp}$ governs ultraviolet (UV) divergences at cusp

Polyakov; Brandt, Neri, Sato Korchemsky & Radyushkin '87

similar to anomalous dimensions of composite operators

$$\Gamma_{\rm cusp}(\phi, \lambda, N)$$
 $\lambda = g_{YM}^2 N$

Physical relevance of Γ_{cusp}

IR divergences of massive amplitudes

$$\mathcal{A} \sim e^{-|\log \mu_{IR}| \Gamma_{\text{cusp}}}$$

Korchemsky, Radyushkin; Becher, Neubert

See Magnea's talk

resummation of soft divergences

similarly for massive form factors (e.g Isgur-Wise)

massless 3-loop form factors: see Huber's talk

Limits and relations of $\Gamma_{\text{cusp}}(\phi)$

 vanishes at zero angle (straight line)

$$\Gamma_{\rm cusp}(\phi=0,\lambda)=0$$

• quark-antiquark potential $\delta = \pi - \phi$

$$\delta = \pi - \phi \qquad \delta \lessdot$$

$$\delta \ll 1$$

$$\Gamma_{\rm cusp} \sim \frac{C}{\delta}$$

 anomalous dimensions of large spin operators

$$\lim_{\varphi \to \infty} \Gamma_{\rm cusp}(i\varphi,\lambda) \sim \varphi \gamma_{\rm cusp}(\lambda)$$
known due to Beisert,

Eden, Staudacher eq integrability!

$$\mathcal{O}_J \sim \operatorname{Tr}(Z\mathcal{D}^J Z), \quad d = 2 + J + \gamma(J, \lambda)$$

$$\lim_{J \to \infty} \gamma(J, \lambda) \sim \log J \, \gamma_{\operatorname{cusp}}(\lambda)$$

Wilson loops in supersymmetric theories

- loop couples to scalars $Tr(Pe^{\int ds A^{\mu}\dot{x}_{\mu}+ds\,n_{i}\Phi^{i}})$ six scalars Φ^{i}
- path-dependent coupling

$$\cos(\phi) = \frac{p \cdot q}{\sqrt{p^2 q^2}} \qquad p^{\mu} \quad n_i \qquad q^{\mu} \quad n_i'$$

$$\cos(\theta) = n \cdot n' \,, \quad n^2 = n'^2 = 1$$

$$\text{e.g.} \quad n = (1, 0, 0, 0, 0, 0) \,, \quad n' = (\cos(\theta), \sin(\theta), 0, 0, 0, 0)$$

$$\Gamma_{\text{cusp}}(\phi, \theta, \lambda, N)$$

• supersymmetry $\Gamma_{\text{cusp}}(\phi = \pm \theta) = 0$

Zarembo

Outline of talk

- Introduction: cusped anomalous dimension Γ_{cusp} and physical motivation
- Part I: Exact result at small angles
- Part 2: Three-loop result, new limit, Schrödinger problem
- Part 3: relation to Regge limit of massive amplitudes

Part I: Exact result for $\Gamma_{ m cusp}$ at small angles

$$\Gamma_{\text{cusp}}(\phi = \pm \theta) = 0$$

$$\Gamma_{\text{cusp}} = (\phi^2 - \theta^2)H(\phi, \lambda, N) + \dots$$

Correa, JMH, Maldacena, Sever

- let us start with $B(\lambda, N) = H(0, \lambda, N)$
- need the coefficient of θ^2 : insertion of scalars

$$\frac{1}{t_1 t_2} \frac{\langle \langle \phi(t_1)\phi(t_2)\rangle \rangle_{line}}{\langle \langle \phi(t_1)\phi(t_2)\rangle \rangle_{line}} = \frac{\frac{\gamma(\lambda,N)}{(t_1-t_2)^2}}{(t_1-t_2)^2}$$

• idea: obtain $\gamma(\lambda, N)$ from known circular Wilson loop!

Final result:

$$B=rac{1}{4\pi^2}\,\sqrt{\lambda}\,rac{I_2(\sqrt{\lambda})}{I_1(\sqrt{\lambda})}+o(1/N^2)$$
 I_a :modified Bessel function

Exact result interpolating between weak and strong coupling!

Correa, JMH, Maldacena, Sever

Bremsstrahlung function" $B(\lambda)\,,\quad \lambda=g_{YM}^2N$

$$B(\lambda), \quad \lambda = g_{YM}^2 N$$

(exact N dependence also known)

First deviation from supersymmetric case:

Correa, JMH, Maldacena, Sever

$$\Gamma_{\text{cusp}} = (\phi^2 - \theta^2)H(\phi, \lambda, N) + \dots$$

H obtained by similar methods relating it to Wilson loops on S^2

$$H(\phi,\lambda) = \frac{2\phi}{1 - \frac{\phi^2}{\pi^2}} B(\tilde{\lambda}), \qquad \tilde{\lambda} = \lambda (1 - \frac{\phi^2}{\pi^2})$$

Comments:

ullet perturbatively, H is a polynomial in ϕ,π

• strong coupling
$$H = \frac{\sqrt{\lambda}}{2} \frac{\phi}{\sqrt{1 - \frac{\phi^2}{\pi^2}}}$$
 | J. M. Henn, IAS

agrees with formula extracted from Drukker, Forini

Part 2: structure of perturbative results and ladder limit

• full 3-loop result: $\xi = \frac{\cos \theta - \cos \phi}{\sin \phi}$

$$\xi = \frac{\cos \theta - \cos \phi}{\sin \phi}$$

Correa, JMH, Maldacena, Sever

$$\Gamma_{\text{cusp}} = \lambda \xi \phi + \lambda^{2} \left[\xi \phi(\pi^{2} - \phi^{2}) + \xi^{2} \left(\text{Li}_{3}(e^{2i\phi}) + \ldots \right) \right] + \lambda^{3} \left[\xi \phi(\pi^{2} - \phi^{2})^{2} + \xi^{2} \left(\text{Li}_{5}(e^{2i\phi}) + \ldots \right) + \xi^{3} \left(\text{HPL}(e^{2i\phi}) + \ldots \right) \right]$$

uniform transcendentality

cf. OCD/N=4 SYM transcendentality principle (KLOV)

$$\phi = i \log x$$
 $\operatorname{Li}_n(x) = \int_0^x \frac{dy}{y} \operatorname{Li}_{n-1}(y), \quad \operatorname{Li}_1(x) = -\log(1-x)$ HPL: harmonic polylogarithms: kernels $\frac{1}{y}, \frac{1}{1-y}, \frac{1}{1+y}$

- linear in ξ exactly known
- highest term $\lambda^L \xi^L$ from new limit $\theta \to i\theta$, $\theta \to \infty$

limit selects ladders

Ladders limit

• highest term $\lambda^L \xi^L$ from new limit $\theta \to i\theta$, $\theta \to \infty$

$$\theta \to i\theta$$
, $\theta \to \infty$

limit selects ladders

Bethe-Salpeter equation

ullet Γ_{cusp} from ground-state energy of Schrödinger problem

$$\left[-\partial_x^2 - \frac{\hat{\lambda}}{8\pi^2} \frac{1}{\cosh x + \cos \phi} \right] \Psi(x) = -\frac{\Gamma_{\text{cusp}}^2}{4} \Psi(x) \qquad \hat{\lambda} \sim \lambda \, \xi$$

- exactly solvable for zero angle (Pöschl-Teller)
- iterative solution in coupling, or angle
- numerical solution

Part 3: Relation to Regge limit of massive amplitudes in N=4 SYM

massive scattering amplitudes in N=4 SYM

gauge theory

Higgs mechanism

$$\begin{split} \Phi &\longrightarrow \left\langle \Phi \right\rangle + \varphi \\ U(N+M) &\longrightarrow U(N) \times U(M) \\ &\longrightarrow U(N) \times U(1)^M \end{split}$$

string theory

Alday, JMH, Plefka, Schuster

isometries of AdS 5 space

Poincare coordinates

dual conformal symmetry (planar)

$$y_i^A o rac{y_i^A}{y_i^2}$$

$$p_i^{\mu} = x_i^{\mu} - x_{i+1}^{\mu}$$
 $p_i^2 = -(m_i - m_{i+1})^2$

$$y_i^A = (x_i^\mu, m_i)$$

$$(2 - (m \cdot - m \cdot 1)^2)$$

• dual conformal symmetry
$$s = (p_1 + p_2)^2$$
 $t = (p_2 + p_3)^2$

$$s = (p_1 + p_2)^2$$

$$=(p_2+p_3)^2$$

Alday, JMH, Plefka, Schuster

$$M_4(s,t;m_1,m_2,m_3,m_4) = M(u,v)$$

$$u = \frac{m_1 m_3}{s + (m_1 - m_3)^2}, \qquad v = \frac{m_2 m_4}{t + (m_2 - m_4)^2}$$

relates two different physical pictures

JMH, Naculich, Spradlin, Schuster

(a):
$$u = \frac{m^2}{s}, v = \frac{m^2}{t}$$

• $u \ll 1$: Regge limit

(b):
$$u = \frac{m^2}{s}, v = \frac{M^2}{t}$$

soft IR divergences,

`Bhabha-scattering"

$$M(u,v) \sim e^{\log u \, \Gamma_{\text{cusp}}(\lambda,\phi)}$$

Summary and discussion

 $\Gamma_{\rm cusp}(\phi,\theta,\lambda,N)$ is interesting physical quantity

- exact result for small angles
- full three-loop result
- new limit that selects ladders; Schrödinger problem
- relation to Regge limit of massive amplitudes

- QCD result at three loops?
- systematics of $\xi = (\cos \theta \cos \phi)/\sin \phi$ expansion
- TBA equations from integrability

Correa, Maldacena, Sever; Drukker

Known circular Wilson loops

circular Wilson loop known

$$\langle W_{circle} \rangle = rac{1}{N} L_{N-1}^1 (-rac{\lambda}{4N}) \, e^{rac{\lambda}{8N}} \,, \qquad \lambda = g_{YM}^2 N$$

L: modified Laguerre polynomial

Drukker.

Pestun

Gross

Ericksson,

Semenoff.

Zarembo

 loop with non-trivial scalar profile also known simple replacement (!) $\lambda \to \lambda (1 - \cos^2 \theta)$

Drukker, Giombi, Ricci, Trancanelli

• expansion in θ determines $\gamma(\lambda, N)$

$$\langle\langle\Phi(t_1)\Phi(t_2)
angle
angle_{circle}=rac{\gamma(\lambda,N)}{2(1-\cos(t_1-t_2))}$$

Final result:
$$B = \frac{1}{2\pi^2} \lambda \partial_{\lambda} \log \langle W_{circle} \rangle$$