Exact results for cusped Wilson loops

Johannes M. Henn

Institute for Advanced Study, Princeton
with D. Correa, A. Sever, J. Maldacena

based on
arXiv:I202.4455 [hep-th]
arXiv:I203.10I9 [hep-th]

$\mathcal{L}=\frac{1}{4} \operatorname{Tr} \int F_{\mu \nu} F^{\mu \nu}, \quad F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}+i g\left[A^{\mu}, A^{\nu}\right]$

$$
A^{\mu}=\sum_{a=1}^{N^{2}-1} A_{a}^{\mu} t_{i j}^{a} \quad \text { gauge group } \operatorname{SU}(\mathbf{N})
$$

Wilson loops:

required for gauge invariance of non-local objects

$$
\sim 1+\sigma^{\mu \nu} F_{\mu \nu}+\ldots
$$

gauge dynamics -Wilson loops of arbitrary shapes

QCD and supersymmetric Yang-Mills theories

- technically very similar
- elegant supersymmetry methods
e.g. all Yang-Mills tree amplitudes

Drummond, JMH 2008
Dixon, Plefka, JMH, Schuster, 2010

Dual conformal / Yangian symmetry

Understanding of structure of Yang-Mills Exactly solvable gauge theory in four dimensions?

Dualities with string theories

AdS/CFT correspondence

N=4 SYM
 $\mathrm{SU}(\mathrm{N})$ gauge theory scalars+fermions

dual string theory description on AdS_5

 conformal

Outline of talk

- Introduction: cusped anomalous dimension $\Gamma_{\text {cusp }}$ and physical motivation
- Part I: Exact result at small angles
- Part 2: Three-loop result, new limit, Schrödinger problem
- Part 3: relation to Regge limit of massive amplitudes

Cusp anomalous dimension

Wilson loop with cusp

$$
\cos (\phi)=\frac{p \cdot q}{\sqrt{p^{2} q^{2}}}
$$

$\Gamma_{\text {cusp }}$ governs ultraviolet (UV) divergences at cusp

Polyakov; Brandt, Neri, Sato
Korchemsky \& Radyushkin '87

$$
\langle W\rangle \sim e^{-\left|\ln \frac{\mu_{U V}}{\mu_{I R}}\right| \Gamma_{\mathrm{cusp}}}
$$

similar to anomalous dimensions of composite operators
$\Gamma_{\text {cusp }}(\phi, \lambda, N) \quad \lambda=g_{Y M}^{2} N$

Physical relevance of $\Gamma_{\text {cusp }}$

- IR divergences of massive amplitudes

$$
\mathcal{A} \sim e^{-\left|\log \mu_{I R}\right| \Gamma_{\text {cusp }}}
$$

Korchemsky, Radyushkin; Becher, Neubert

See Magnea's talk

resummation of soft divergences

- similarly for massive form factors (e.g Isgur-Wise)

massless 3-loop form factors: see Huber's talk

Limits and relations of $\Gamma_{\text {cusp }}(\phi)$

- vanishes at zero angle

$$
\Gamma_{\text {cusp }}(\phi=0, \lambda)=0
$$

(straight line)

- quark-antiquark potential $\delta=\pi-\phi \quad \delta \ll 1$

$$
\Gamma_{\text {cusp }} \sim \frac{C}{\delta}
$$

- anomalous dimensions of large spin operators
$\lim _{\varphi \rightarrow \infty} \Gamma_{\text {cusp }}(i \varphi, \lambda) \underset{\text { known due oo Besiserth }}{\sim}$ Eden, Staudacher eq integrability!

$$
\begin{aligned}
& \mathcal{O}_{J} \sim \operatorname{Tr}\left(Z \mathcal{D}^{J} Z\right), \quad d=2+J+\gamma(J, \lambda) \\
& \lim _{J \rightarrow \infty} \gamma(J, \lambda) \sim \log J \gamma_{\text {cusp }}(\lambda)
\end{aligned}
$$

Wilson loops in supersymmetric theories

- loop couples to scalars $\operatorname{Tr}\left(P e^{\int d s A^{\mu} \dot{x}_{\mu}+d s n_{i} \Phi^{i}}\right)$ six scalars Φ^{i}
- path-dependent coupling

$$
\begin{aligned}
& \cos (\phi)=\frac{p \cdot q}{\sqrt{p^{2} q^{2}}} \quad p^{\prime} \quad n_{i} \\
& \cos (\theta)=n \cdot n^{\prime}, \quad n^{2}=n^{\prime 2}=1 \\
& \text { e.g. } n=(1,0,0,0,0,0), \quad n^{\prime}=(\cos (\theta), \sin (\theta), 0,0,0,0) \\
& \Gamma_{\text {cusp }}(\phi, \theta, \lambda, N)
\end{aligned}
$$

- supersymmetry $\Gamma_{\text {cusp }}(\phi= \pm \theta)=0$

Outline of talk

- Introduction: cusped anomalous dimension $\Gamma_{\text {cusp }}$ and physical motivation
- Part I: Exact result at small angles
- Part 2: Three-loop result, new limit, Schrödinger problem
- Part 3: relation to Regge limit of massive amplitudes

PartI: Exact result for $\Gamma_{\text {cusp }}$ at small angles

$$
\begin{aligned}
& \Gamma_{\text {cusp }}(\phi= \pm \theta)=0 \\
& \Gamma_{\text {cusp }}=\left(\phi^{2}-\theta^{2}\right) H(\phi, \lambda, N)+\ldots
\end{aligned}
$$

- let us start with $B(\lambda, N)=H(0, \lambda, N)$
- need the coefficient of θ^{2} : insertion of scalars

- idea: obtain $\gamma(\lambda, N)$ from known circular Wilson loop!

Final result:

$$
B=\frac{1}{4 \pi^{2}} \sqrt{\lambda} \frac{I_{2}(\sqrt{\lambda})}{I_{1}(\sqrt{\lambda})}+o\left(1 / N^{2}\right) \quad I_{a} \text { :modified Bessel function }
$$

Exact result interpolating between weak and strong coupling!

"'Bremsstrahlung function" $B(\lambda), \quad \lambda=g_{Y M}^{2} N$

(exact N dependence also known)

First deviation from supersymmetric case:

$$
\Gamma_{\text {cusp }}=\left(\phi^{2}-\theta^{2}\right) H(\phi, \lambda, N)+\ldots
$$

H obtained by similar methods relating it to Wilson loops on $\mathrm{S}^{\wedge} 2$

$$
H(\phi, \lambda)=\frac{2 \phi}{1-\frac{\phi^{2}}{\pi^{2}}} B(\tilde{\lambda}), \quad \tilde{\lambda}=\lambda\left(1-\frac{\phi^{2}}{\pi^{2}}\right)
$$

Comments:

- perturbatively, H is a polynomial in ϕ, π
- strong coupling $H=\frac{\sqrt{\lambda}}{2} \frac{\phi}{\sqrt{1-\frac{\phi^{2}}{\pi^{2}}}}$
J. M. Henn, IAS

Part 2 : structure of perturbative results and ladder limit

- full 3-loop result: $\quad \xi=\frac{\cos \theta-\cos \phi}{\sin \phi}$

$$
\begin{aligned}
\Gamma_{\text {cusp }} & =\lambda \xi \phi \\
& +\lambda^{2}\left[\xi \phi\left(\pi^{2}-\phi^{2}\right)+\xi^{2}\left(\operatorname{Li}_{3}\left(e^{2 i \phi}\right)+\ldots\right)\right] \\
& +\lambda^{3}\left[\xi \phi\left(\pi^{2}-\phi^{2}\right)^{2}+\xi^{2}\left(\operatorname{Li}_{5}\left(e^{2 i \phi}\right)+\ldots\right)+\xi^{3}\left(\operatorname{HPL}\left(e^{2 i \phi}\right)+\ldots\right)\right]
\end{aligned}
$$

- uniform transcendentality

$$
\phi=i \log x \quad \operatorname{Li}_{n}(x)=\int_{0}^{x} \frac{d y}{y} \operatorname{Li}_{n-1}(y), \quad \operatorname{Li}_{1}(x)=-\log (1-x)
$$

HPL: harmonic polylogarithms: kernels $\frac{1}{y}, \frac{1}{1-y}, \frac{1}{1+y}$

- linear in ξ - exactly known
- highest term $\lambda^{L} \xi^{L}$ from new limit $\theta \rightarrow i \theta, \quad \theta \rightarrow \infty$ limit selects ladders

Ladders limit

- highest term $\lambda^{L} \xi^{L}$ from new limit $\theta \rightarrow i \theta, \quad \theta \rightarrow \infty$
 limit selects ladders

Bethe-Salpeter equation

- $\Gamma_{\text {cusp }}$ from ground-state energy of Schrödinger problem

$$
\left[-\partial_{x}^{2}-\frac{\hat{\lambda}}{8 \pi^{2}} \frac{1}{\cosh x+\cos \phi}\right] \Psi(x)=-\frac{\Gamma_{\text {cusp }}^{2}}{4} \Psi(x) \quad \hat{\lambda} \sim \lambda \xi
$$

- exactly solvable for zero angle (Pöschl-Teller)
- iterative solution in coupling, or angle
- numerical solution

Part 3 : Relation to Regge limit of massive amplitudes in $\mathrm{N}=4$ SYM

- massive scattering amplitudes in $\mathrm{N}=4$ SYM gauge theory
Higgs mechanism

$$
\begin{aligned}
\Phi \longrightarrow\langle\Phi\rangle & +\varphi \\
U(N+M) & \longrightarrow U(N) \times U(M) \\
& \longrightarrow U(N) \times U(1)^{M}
\end{aligned}
$$

string theory

- dual conformal symmetry (planar)

$$
\begin{array}{ll}
y_{i}^{A} \rightarrow \frac{y_{i}^{A}}{y_{i}^{2}} & y_{i}^{A}=\left(x_{i}^{\mu}, m_{i}\right) \quad \begin{array}{c}
\text { isometries of Ads_5 space } \\
\text { Poincare coordinates }
\end{array} \\
p_{i}^{\mu}=x_{i}^{\mu}-x_{i+1}^{\mu} & p_{i}^{2}=-\left(m_{i}-m_{i+1}\right)^{2}
\end{array}
$$

- dual conformal symmetry
 $s=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(p_{2}+p_{3}\right)^{2}$
 $$
\begin{aligned} & M_{4}\left(s, t ; m_{1}, m_{2}, m_{3}, m_{4}\right)=M(u, v) \\ & u=\frac{m_{1} m_{3}}{s+\left(m_{1}-m_{3}\right)^{2}}, \quad v=\frac{m_{2} m_{4}}{t+\left(m_{2}-m_{4}\right)^{2}} \end{aligned}
$$

- relates two different physical pictures

JMH, Naculich, Spradlin, Schuster

$$
(a): \quad u=\frac{m^{2}}{s}, v=\frac{m^{2}}{t}
$$

- $u \ll 1$: Regge limit

$(b): u=\frac{m^{2}}{s}, v=\frac{M^{2}}{t}$
soft IR divergences,
"Bhabha-scattering"

$$
M(u, v) \sim e^{\log u \Gamma_{\mathrm{cusp}}(\lambda, \phi)}
$$

Summary and discussion

 $\Gamma_{\text {cusp }}(\phi, \theta, \lambda, N)$ is interesting physical quantity- exact result for small angles
- full three-loop result
- new limit that selects ladders; Schrödinger problem
- relation to Regge limit of massive amplitudes
- QCD result at three loops?
- systematics of $\xi=(\cos \theta-\cos \phi) / \sin \phi$ expansion
- TBA equations from integrability

Known circular Wilson loops

- circular Wilson loop known

$$
\left\langle W_{\text {circle }}\right\rangle=\frac{1}{N} L_{N-1}^{1}\left(-\frac{\lambda}{4 N}\right) e^{\frac{\lambda}{8 N}}, \quad \lambda=g_{Y M}^{2} N
$$

L: modified Laguerre polynomial

- loop with non-trivial scalar profile also known simple replacement (!) $\lambda \rightarrow \lambda\left(1-\cos ^{2} \theta\right)$

Ericksson,
Semenoff, Zarembo

Drukker,
Gross
Pestun
Drukker, Giombi,
Ricci,

- expansion in θ determines $\gamma(\lambda, N)$

$$
\left\langle\left\langle\Phi\left(t_{1}\right) \Phi\left(t_{2}\right)\right\rangle\right\rangle_{\text {circle }}=\frac{\gamma(\lambda, N)}{2\left(1-\cos \left(t_{1}-t_{2}\right)\right)}
$$

Final result:

$$
B=\frac{1}{2 \pi^{2}} \lambda \partial_{\lambda} \log \left\langle W_{\text {circle }}\right\rangle
$$

