MadGolem - automating NLO calculations for New Physics

David López-Val ITP, Ruprecht-Karls Universität Heidelberg

in collaboration with D. Gonçalves-Netto, T. Plehn (Heidelberg U.), I. Wigmore (Edinburgh U.), K. Mawatari (Vrije U.)

April 19th, Wernigerode, Germany

2 Deconstructing MadGolem

- General architecture, modules & flowchart
- Handling the loops
- Handling the divergences

3 Testing MadGolem

4 Using MadGolem

- The user's perspective
- Applications to New Physics

MadGolem in a nutshell

Outline

Motivating MadGolem

Deconstructing MadGolem

- General architecture, modules & flowchart
- Handling the loops
- Handling the divergences

3 Testing MadGolem

4 Using MadGolem

- The user's perspective
- Applications to New Physics

5 MadGolem in a nutshell

NEXT-TO-LEADING ORDER

NEW PHYSICS

Tools for New Physics Searches at Hadron Colliders

100

Why NLO ?

- QCD corrections quantitatively relevant : $K \sim 1.5$
- QCD corrections qualitatively relevant: scale dependence, normalization & shape of distributions, gluon radiation, new partonic subprocesses ...

Why NLO ?

- QCD corrections quantitatively relevant : $K \sim 1.5$
- QCD corrections qualitatively relevant: scale dependence, normalization & shape of distributions, gluon radiation, new partonic subprocesses . . .

Why Automation ?

- Many models & processes ↔ analogue technical challenges
- Cost & time saving, robustness, accessibility
- Eases validation, engages Theory/Experiment interchange

Why NLO ?

- QCD corrections quantitatively relevant : $K \sim 1.5$
- QCD corrections qualitatively relevant: scale dependence, normalization & shape of distributions, gluon radiation, new partonic subprocesses . . .

Why Automation ?

- Many models & processes ↔ analogue technical challenges
- Cost & time saving, robustness, accessibility
- Eases validation, engages Theory/Experiment interchange

MadGolem

[Binoth, Gonçalves-Netto, DLV, Mawatari, Plehn, Wigmore, arXiv:1108.1250 [hep-ph]]

Why NLO ?

- QCD corrections quantitatively relevant : $K \sim 1.5$
- QCD corrections qualitatively relevant: scale dependence, normalization & shape of distributions, gluon radiation, new partonic subprocesses . . .

Why Automation ?

- Many models & processes ↔ analogue technical challenges
- Cost & time saving, robustness, accessibility
- Eases validation, engages Theory/Experiment interchange

MadGolem

[Binoth, Gonçalves-Netto, DLV, Mawatari, Plehn, Wigmore, arXiv:1108.1250 [hep-ph]]

Fully automated calculation of NLO QCD corrections for arbitrary 2 → 2 processes
 in a generic BSM framework soon to be public !

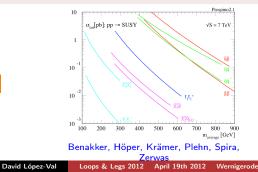
Why NLO ?

- QCD corrections quantitatively relevant : $K\sim 1.5$
- QCD corrections qualitatively relevant: scale dependence, normalization & shape of distributions, gluon radiation, new partonic subprocesses . . .

Why Automation ?

- Many models & processes ↔ analogue technical challenges
- Cost & time saving, robustness, accessibility
- Eases validation, engages Theory/Experiment interchange

Why NLO ?

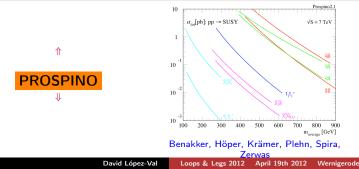

- QCD corrections quantitatively relevant : $K\sim 1.5$
- QCD corrections qualitatively relevant: scale dependence, normalization & shape of distributions, gluon radiation, new partonic subprocesses ...

Why Automation ?

- Many models & processes ↔ analogue technical challenges
- Cost & time saving, robustness, accessibility

PROSPINO

• Eases validation, engages Theory/Experiment interchange

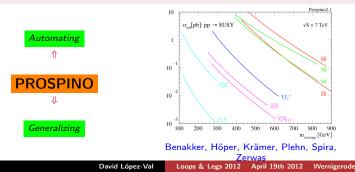


Why NLO ?

- QCD corrections quantitatively relevant : $K\sim 1.5$
- QCD corrections qualitatively relevant: scale dependence, normalization & shape of distributions, gluon radiation, new partonic subprocesses ...

Why Automation ?

- Many models & processes ↔ analogue technical challenges
- Cost & time saving, robustness, accessibility
- Eases validation, engages Theory/Experiment interchange



Why NLO ?

- QCD corrections quantitatively relevant : $K\sim 1.5$
- QCD corrections qualitatively relevant: scale dependence, normalization & shape of distributions, gluon radiation, new partonic subprocesses ...

Why Automation ?

- Many models & processes ↔ analogue technical challenges
- Cost & time saving, robustness, accessibility
- Eases validation, engages Theory/Experiment interchange

Outline

Motivating MadGolen

2 Deconstructing MadGolem

- General architecture, modules & flowchart
- Handling the loops
- Handling the divergences

3 Testing MadGolem

4 Using MadGolem

- The user's perspective
- Applications to New Physics

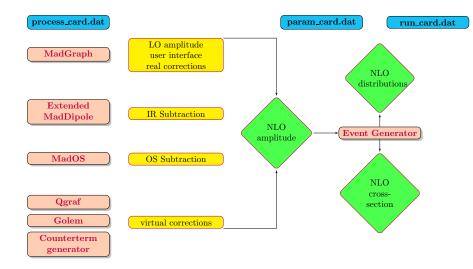
5 MadGolem in a nutshell

LOOPS QGRAF

MadGOLEM

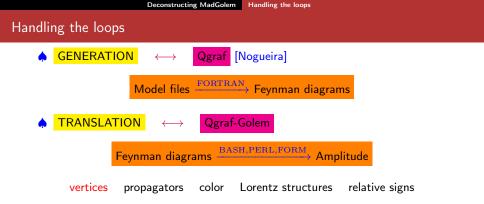
TREE MadGraph

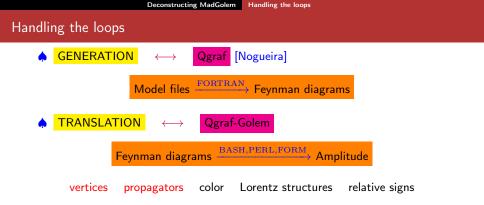
IR divergences

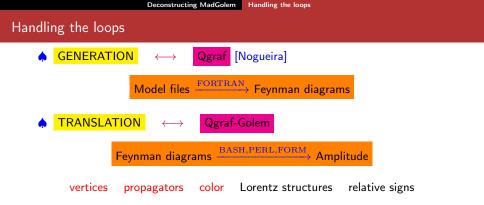

Extended MadDipole UV divergences

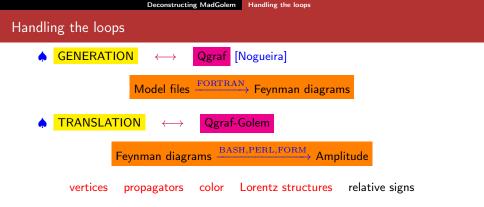
Renormalization

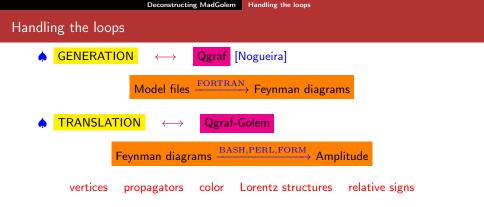
OS divergences

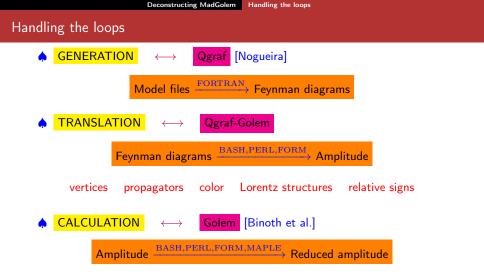

MadOS

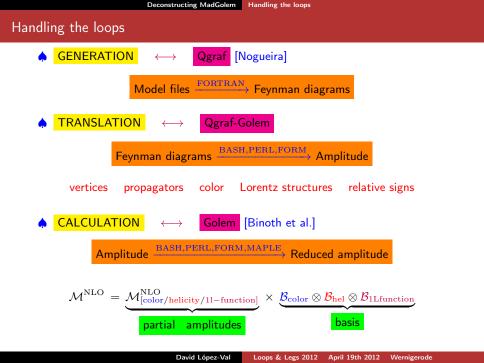

MadGolem from inside: modules and flowchart

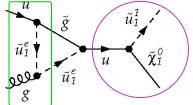




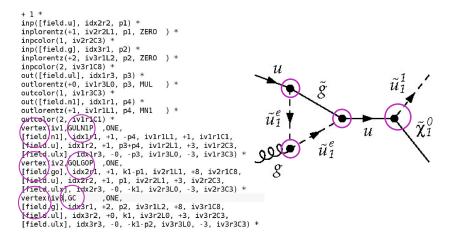






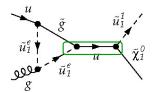


Step 1: Generation of the one-loop amplitude


One-loop amplitude from QGRAF: qgraf nlo.dat

+ 1 * inp([field.u], idx2r2, p1) * inplorentz(+1, iv2r2L1, p1, ZER0 inpcolor(1. iv2r2C3) * inp([field.g], idx3r1, p2) * inplorentz(+2, iv3r1L2, p2, ZER0 inpcolor(2, iv3r1C8) * out([field.ul]. idx1r3. p3) * outlorentz(+0, iv1r3L0, p3, MUL outcolor(1, iv1r3C3) * out([field.n1], idx1r1, p4) * outlorentz(+1. iv1r1L1. p4. MN1) * outcolor(2, iv1r1C1) * vertex(iv1,GULN1P ,ONE, [field.n1]. idx1r1. +1. -p4. iv1r1L1. +1. iv1r1C1. [field.u]. idx1r2. +1. p3+p4. iv1r2L1. +3. iv1r2C3. [field.ulx], idx1r3, -0, -p3, iv1r3L0, -3, iv1r3C3) vertex(iv2,GQLGOP ,ONE, [field.go]. idx2r1. +1. k1-p1. iv2r1L1. +8. iv2r1C8. [field.u]. idx2r2. +1. p1. iv2r2L1. +3. iv2r2C3. [field.ulx], idx2r3, -0, -k1, iv2r3L0, -3, iv2r3C3) * vertex(iv3.GC ONE. [field.g]. idx3r1, +2, p2, iv3r1L2, +8, iv3r1C8, [field.ul]. idx3r2. +0. k1. iv3r2L0. +3. iv3r2C3. [field.ulx], idx3r3, -0, -k1-p2, iv3r3L0, -3, iv3r3C3) *

Step 1: Generation of the one-loop amplitude


One-loop amplitude from QGRAF: qgraf nlo.dat

Step 1: Generation of the one-loop amplitude

One-loop amplitude from QGRAF: qgraf nlo.dat

vertex(iv4,GQLGOM ,ONE, [field.ux], idx4r1, -1, -p3-p4, iv4r1L1, -3, iv4r1C3, [field.go]. idx4r2. +1. -k1+p1. iv4r2L1. +8. iv4r2C8. [field.ul], idx4r3, +0, k1+p2, iv4r3L0, +3, iv4r3C3) * prop([field.u], idx4r1, idx1r2) * propcolor(+3, iv4r1C3, iv1r2C3) * proplorentz(+1, p3+p4, ZER0 , iv4r1L1, iv1r2L1) prop([field.ul], idx2r3, idx3r2) * propcolor(+3, iv2r3C3, iv3r2C3) * proplorentz(+0, k1, MUL , iv2r3L0, iv3r2L0) * prop([field.go], idx4r2, idx2r1) * propcolor(+8, iv4r2C8, iv2r1C8) * proplorentz(+1, k1-p1, MG0 , iv4r2L1, iv2r1L1) * prop([field.ul], idx3r3, idx4r3) * propcolor(+3, iv3r3C3, iv4r3C3) * proplorentz(+0, k1+p2, MUL , iv3r3L0, iv4r3L0)

Step 2: Translation of the one-loop amplitude

One-loop amplitude upon translation: GRAPH_MGOLEM_LOOP.h

```
diagram1 = + Den(k1 + k2.0)*Den( - k3 - k4.0)*intM(Den(g1.0).Den(k1
     + k2 + q1,0))*SUNSum(Col14,3)*SUNSum(Glu15,8)*SUNSum(Col18,3)*
    SUNT(Glu2,Col14,Col1)*SUNT(Glu15,Col3,Col18)*SUNT(Glu15,Col18,
   Coll4)*GG1^3*scalar3*Pi^(-2) * ( 1/32*Spinor(k4,MN1,-1)*g (2,7 ,
       k3,Lor5,k1,Lor5,k1,Lorhx2)*Spinor(k1,0,1)*e2(Lorhx2)*GULN1P2
        + 1/32*Spinor(k4,MN1,-1)*g (2,7,k3,Lor5,k1,Lor5,k2,Lorhx2)*
       Spinor(k1,0,1)*e2(Lorhx2)*GULN1P2 + 1/32*Spinor(k4,MN1,-1)*g (
       2,7 ,k3,Lor5,k2,Lor5,k1,Lorhx2)*Spinor(k1,0,1)*e2(Lorhx2)*
      GULN1P2 + 1/32*Spinor(k4,MN1,-1)*g (2,7,k3,Lor5,k2,Lor5,k2,
       Lorhx2)*Spinor(k1,0,1)*e2(Lorhx2)*GULN1P2 + 1/32*Spinor(k4,MN1
       ,-1)*g (2,7 ,k3,Lor5,q1,Lor5,k1,Lorhx2)*Spinor(k1,0,1)*
       e2(Lorhx2)*GULN1P2 + 1/32*Spinor(k4,MN1,-1)*g (2,7 ,k3,Lor5,g1
       ,Lor5,k2,Lorhx2)*Spinor(k1,0,1)*e2(Lorhx2)*GULN1P2 + 1/32*
       Spinor(k4,MN1,-1)*g (2,7 ,k4,Lor5,k1,Lor5,k1,Lorhx2)*Spinor(k1
       .0.1)*e2(Lorhx2)*GULN1P2 + 1/32*Spinor(k4.MN1.-1)*g (2.7 ,k4.
       Lor5,k1,Lor5,k2,Lorhx2)*Spinor(k1,0,1)*e2(Lorhx2)*GULN1P2 + 1/
       32*Spinor(k4,MN1,-1)*g (2,7 ,k4,Lor5,k2,Lor5,k1,Lorhx2)*
       Spinor(k1,0,1)*e2(Lorhx2)*GULN1P2 + 1/32*Spinor(k4,MN1,-1)*q (
       2,7 ,k4,Lor5,k2,Lor5,k2,Lorhx2)*Spinor(k1,0,1)*e2(Lorhx2)*
       GULN1P2 + 1/32*Spinor(k4,MN1,-1)*g (2,7_,k4,Lor5,q1,Lor5,k1,
       Lorhx2)*Spinor(k1,0,1)*e2(Lorhx2)*GULN1P2 + 1/32*Spinor(k4,MN1
       ,-1)*g (2,7 ,k4,Lor5,g1,Lor5,k2,Lorhx2)*Spinor(k1,0,1)*
```

One-loop amplitude upon translation: GRAPH_MGOLEM_LOOP.h

```
# Colour basis has 2 elements.
NCOLS :=
         2:
COL[ 1] := dd(Col022,Col021)*dd(Col1,Col3):
COL[ 2] := dd(Col022.Col3)*dd(Col1.Col021):
NC := 3:.
TR := 1/2:
NF := 5:.
#
# epsilon tensor basis has 1 elements.
#
NEPS :=
        1:
EPSTEN[ 1] := 1:
#
# Function basis has 4 elements.
NUM LOC FUNS := 4:
FUN[ 1] := BUBd4(S12.0.0):
FUN[ 2] := BUBd4(S12,MUL2,MG02):
FUN
     3] := BUBd4EPS(S12.0.0):
FUN[
      4] := BUBd4EPS(S12,MUL2,MG02):
  12 helicity amplitudes found
NUM HELIS := 12:
HELI[ 1]:=[1, 1, 5, 1]:
     2]:=[1, 1, 5, -1]:
HELT[
```

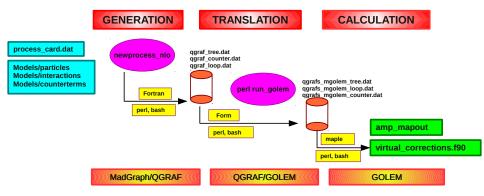
One-loop amplitude upon translation: GRAPH MGOLEM LOOP.h

GRAPH COEFF has indices: NGRAPH, NHELI, NCOL, NEPSTEN, NFUN

GRAPH COEFF[1,	8,	1,	1,	1]:=-1/36*(-MUL2*S23+MUL2*MN12+S23^2+S12*S23-MN12*S23)*GULN1P2*GG1^3/Pi^2:
GRAPH COEFF[1,	8,	2,	1,	1]:=1/12*(-MUL2*S23+MUL2*MN12+S23^2+S12*S23-MN12*S23)*GULN1P2*GG1^3/Pi^2:
GRAPH COEFF[1,	8,	1,	1,	2]:=0:
GRAPH COEFF[1,	8,	2,	1,	2]:=0:
GRAPH COEFF[1,	8,	1,	1,	3]:=0:
GRAPH COEFF[1,	8,	2,	1,	3]:=0:
GRAPH COEFF[1,	8,	1,	1,	4]:=0:
GRAPH COEFF[1,	8,	2,	1,	4]:=0:
GRAPH COEFF[1,	8,	1,	1,	5]:=0:
GRAPH COEFF[1,	8,	2,	1,	5]:=0:
GRAPH COEFF[1,	8,	1,	1,	6] :=0 :
GRAPH COEFF[1,	8,	2,	1,	6]:=0:
GRAPH COEFF[1,	8,	1,	1,	7]:=0:
GRAPH COEFF[1,	8,	2,	1,	7]:=0:
GRAPH COEFF[1,	8,	1,	1,	8]:=0:
GRAPH COEFF[1,	8,	2,	1,	8]:=0:
GRAPH COEFF[1,	8,	1,	1,	9]:=1/36*(-MUL2*S23+MUL2*MN12+S23^2+S12*S23-MN12*S23)*GULN1P2*GG1^3/Pi^2:
GRAPH COEFF[1.	8,	2,	1.	9]:=-1/12*(-MUL2*S23+MUL2*MN12+S23^2+S12*S23-MN12*S23)*GULN1P2*GG1^3/Pi^2:
GRAPH COEFF[1,	8,	1,	1.	10]:=0:
GRAPH COEFF[1,	8,	2,	1,	10]:=0:
GRAPH COEFF[1,	8,	1,	1,	11]:=0:
GRAPH COEFF[1,	8,	2,	1,	11]:=0:
SPINOR FAC[1,	8]::	= I	nvSpaa(k1,k2)*InvSpaa(k1,k4)*InvSpaa(k2,k3)*InvSpbb(k1,k3):

One-loop amplitude upon translation: GRAPH MGOLEM LOOP.h

GRAPH_COEFF has indices: NGRAPH, NHELI, NCOL, NEPSTEN, NFUN


GRAPH COEFF[1,	8,	1,	1, 1]:=-1/36*(-MUL2*523+MUL2*MN12+S23^2+S12*S23-MN12*S23)*GULN1P2*GG1^3/Pi^2:
GRAPH COEFF[1,	8,	2,	1, 1]:=1/12*(-MUL2*S23+MUL2*MN12+S23^2+S12*S23-MN12*S23)*GULN1P2*GG1^3/Pi^2:
GRAPH COEFF[1,	8,	1,	1, 2]:=0:
GRAPH COEFF[1,	8,	2,	1, 2]:=0:
GRAPH COEFF[1,	8,	1,	1, 3]:=0:
GRAPH COEFF[1,	8,	2,	1, 3]:=0:
GRAPH COEFF[1,	8,	1,	1, 4]:=0:
GRAPH COEFF[1,	8,	2,	1, 4]:=0:
GRAPH COEFF[1,	8,	1,	1, 5]:=0:
GRAPH COEFF[1,	8,	2,	1, 5]:=0:
GRAPH COEFF[1,	8,	1,	1, 6]:=0:
GRAPH COEFF[1,	8,	2,	1, 6]:=0:
GRAPH COEFF[1,	8,	1,	1, 7]:=0:
GRAPH COEFF[1,	8,	2,	1, 7]:=0:
GRAPH COEFF[1,	8,	1,	1, 8]:=0:
GRAPH COEFF[1,	8,	2,	1, 8]:=0:
GRAPH COEFF[1.	8,	1.	1, 91:=1/36*(-MUL2*523+MUL2*MN12+523^2+512*523-MN12*523)*GULN1P2*GG1^3/Pi^2:
GRAPH COEFFI	1.	8,	2.	1, 9]:=-1/12*(-MUL2*S23+MUL2*MN12+S23^2+S12*S23-MN12*S23)*GULN1P2*GG1^3/Pi^2:
GRAPH COEFFI	1,		1,	
GRAPH COEFF[1,	8,	2,	1, 10]:=0:
GRAPH COEFF[1,	8,	1,	1, 11]:=0:
GRAPH COEFF[1,	8,	2,	
SPINOR FAC[1,	8		:= InvSpaa(k1, k2)*InvSpaa(k1, k4)*InvSpaa(k2, k3)*InvSpbb(k1, k3):
			<u> </u>	

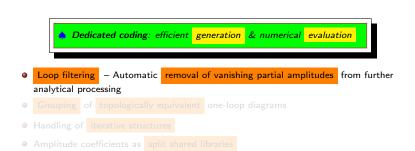
One-loop amplitude upon translation: GRAPH MGOLEM LOOP.h

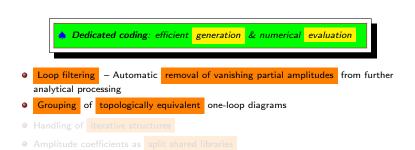
GRAPH_COEFF has indices: NGRAPH, NHELI, NCOL, NEPSTEN, NFUN

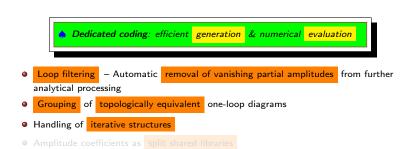
GRAPH COEFF[1,	8,	1,	1,	[1]	=-1/36*(-MUL2*S23+MUL2*MN12+S23^2+S12*S23-MN12*S23)*GULN1P2*GG1^3/Pi^2:
GRAPH COEFF[1,	8,	2,	1,	1]	=1/12*(-MUL2*S23+MUL2*MN12+S23^2+S12*S23-MN12*S23)*GULN1P2*GG1^3/Pi^2:
GRAPH COEFF[1,	8,	1,	1,	2]	:=0:
GRAPH COEFF[1,	8,	2,	1,	2]	:=0:
GRAPH COEFF[1,	8,	1,	1,	3]	:=0:
GRAPH COEFF[1,	8,	2,	1,	3]	:=0:
GRAPH COEFF[1,	8,	1,	1,	4]	:=0:
GRAPH COEFF[1,	8,	2,	1,	4]	:=0:
GRAPH COEFF[1,	8,	1,	1,	5]	:=0:
GRAPH COEFF[1,	8,	2,	1,	51	:=0:
GRAPH COEFF[1,	8,	1,	1,	6]	:=0:
GRAPH COEFF[1,	8,	2,	1,	6]	:=0:
GRAPH COEFF[1,	8,	1,	1,	7i	:=0:
GRAPH COEFF[1,	8,	2,	1,	7i	:=0 :
GRAPH COEFF[1,	8,	1,	1,	81	:=0 :
GRAPH COEFF[1,	8,	2,	1,	8]	:=0 :
GRAPH COEFF[1.	8,	1.	1,		:=1/36*(-MUL2*S23+MUL2*MN12+S23^2+S12*S23-MN12*S23)*GULN1P2*GG1^3/Pi^2:
GRAPH COEFF	1.	8,	2,	1.	9j	=-1/12*(-MUL2*S23+MUL2*MN12+S23^2+S12*S23-MN12*S23)*GULN1P2*GG1^3/Pi^2:
GRAPH COEFF	1.	8,	1.	1.		:=0 :
GRAPH COEFF	1.	8,	2,	1.		:=0 :
GRAPH COEFF[1,	8,	1,	1,	11]	:=0:
GRAPH COEFF[1,	8,	2,	1,	11]	:=0:
SPINOR FAC[1,	8	1	:=		<pre>paa(k1,k2)*InvSpaa(k1,k4)*InvSpaa(k2,k3)*InvSpbb(k1,k3):</pre>
		\square	Ľ)		

Handling the loops - summary

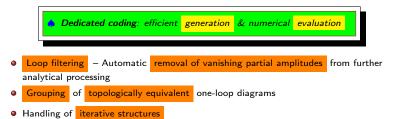
Handling the loops: in best shape for BSM

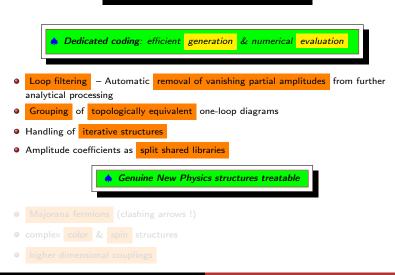

Analytical results accessible at any time

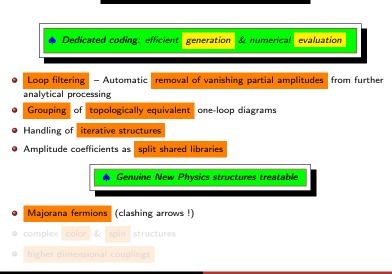

Handling the loops: in best shape for BSM

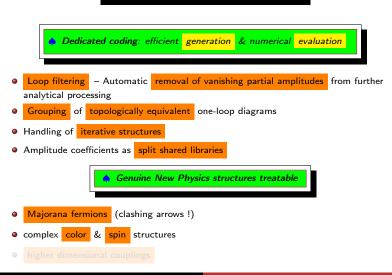

Analytical results accessible at any time

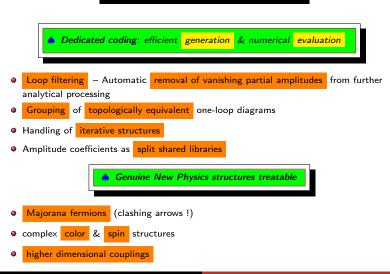
Dedicated coding: efficient generation & numerical evaluation


- Loop filtering Automatic removal of vanishing partial amplitudes from further analytical processing
- Grouping of topologically equivalent one-loop diagrams
- Handling of iterative structures
- Amplitude coefficients as split shared libraries






Analytical results accessible at any time



• Amplitude coefficients as split shared libraries

Highlighting the major improvements

Grouping of topologically equivalent one-loop diagrams

+ 1 *2* inp([field.u], idx1r2, p1) * inplorentz(+1, iv1r2L1, p1, ZER0 inpcolor(1, iv1r2C3) * inp([field.g], idx2r3, p2) * inplorentz(+2, iv2r3L2, p2, ZER0 inpcolor(2, iv2r3C8) * out([field.ur], idx1r3, p3) * outlorentz(+0, iv1r3L0, p3, MUR outcolor(1, iv1r3C3) * out([field.n1], idx3r2, p4) * outlorentz(+1, iv3r2L1, p4, MN1 outcolor(2, iv3r2C1) *

Including the Counterterms

$$\mathcal{L}_0 \to \mathcal{L}(Z_{\phi}^{1/2}\phi, Z_g g) = \mathcal{L}(\phi, g) + \delta \mathcal{L}(\phi, g, \delta Z_{\phi}, \delta g)$$

Including the Counterterms

$$\mathcal{L}_0 o \mathcal{L}(Z_{\phi}^{1/2}\phi, Z_g g) = \mathcal{L}(\phi, g) + \delta \mathcal{L}(\phi, g, \delta Z_{\phi}, \delta g)$$

$$\underbrace{\delta \mathcal{L}(\delta Z_{\phi}, \delta g)}_{\text{Models/vertex_ct.dat}} \Leftrightarrow \underbrace{\Sigma_{q}, \ \Sigma_{\tilde{q}}, \ \Sigma_{g}, \ \Sigma_{\tilde{g}} \ @\mathcal{O}(\alpha_{s})}_{\text{GOLEMproc/CT_list.map}}$$

Including the Counterterms

$$\mathcal{L}_0 \to \mathcal{L}(Z_{\phi}^{1/2}\phi, Z_g g) = \mathcal{L}(\phi, g) + \delta \mathcal{L}(\phi, g, \delta Z_{\phi}, \delta g)$$

$$\underbrace{\delta \mathcal{L}(\delta Z_{\phi}, \delta g)}_{\text{Models/vertex_ct.dat}} \Leftrightarrow \underbrace{\Sigma_{q}, \ \Sigma_{\tilde{q}}, \ \Sigma_{g}, \ \Sigma_{\tilde{g}} \ @\mathcal{O}(\alpha_{s})}_{\text{GOLEMproc/CT_list.map}}$$

Renormalization scheme

- $\bullet \ \overline{\mathrm{MS}}$, for the field-strength RCs of the massless particles
- OS , for the field-strength RCs of the massive particles
- $\overline{\mathrm{MS}}$ /zero-momentum , for g_s [Beenakker et al, Berge et al]
- SUSY breaking from Dimensional Regularization restored through additional finite CTs [Martin, Vaughn; Beenakker et al].

Dipole Subtraction: [Catani, Seymour; Catani, Dittmaier, Seymour, Trócsányi]

$$\sigma = \int_m \ d\,\sigma^B \ + \int_{m+1} \ d\,\sigma^R + \int_m \left[\int_1 \ d\,\sigma^V\right]$$

Dipole Subtraction: [Catani, Seymour; Catani, Dittmaier, Seymour, Trócsányi]

$$\sigma = \int_{m} d\sigma^{B} + \underbrace{\int_{m+1} d\sigma^{R}}_{\int \frac{dk}{k^{1+\epsilon}} \sim \frac{1}{\epsilon_{IR}}, \int \frac{d\theta}{\theta^{1+\epsilon}} \sim \frac{1}{\epsilon_{IR}}} + \int_{m} \left[\int_{1} \underbrace{\frac{d\sigma^{V}}{\int \frac{dk}{k^{1+\epsilon}} \sim \frac{1}{\epsilon_{IR}}}}_{\int \frac{dk}{\theta^{1+\epsilon}} \sim \frac{1}{\epsilon_{IR}}} \right]$$

Dipole Subtraction: [Catani, Seymour; Catani, Dittmaier, Seymour, Trócsányi]

$$\sigma = \int_{m} d\sigma^{B} + \underbrace{\int_{m+1} d\sigma^{R} - d\sigma^{A}}_{\frac{1}{\epsilon_{IR}} - \frac{1}{\epsilon_{IR}}} + \int_{m} \left[\int_{1} \underbrace{\frac{d\sigma^{V} + d\sigma^{A}}_{\frac{1}{\epsilon_{IR}} - \frac{1}{\epsilon_{IR}}}}_{\frac{1}{\epsilon_{IR}} - \frac{1}{\epsilon_{IR}}} \right]$$

Dipole Subtraction: [Catani, Seymour; Catani, Dittmaier, Seymour, Trócsányi]

$$\sigma = \int_{m} d\sigma^{B} + \underbrace{\int_{m+1} d\sigma^{R} - d\sigma^{A}}_{\frac{1}{\epsilon_{IR}} - \frac{1}{\epsilon_{IR}}} + \int_{m} \left[\int_{1} \underbrace{d\sigma^{V} + d\sigma^{A}}_{\frac{1}{\epsilon_{IR}} - \frac{1}{\epsilon_{IR}}} \right]$$

Local (pointwise) subtraction of the IR poles

- Based on factorization of collinear&soft singularities
- Process-independent
- Analytically integrable over the single-parton phase-space containing the divergences

Dipole Subtraction: [Catani, Seymour; Catani, Dittmaier, Seymour, Trócsányi]

$$\sigma = \int_{m} d\sigma^{B} + \underbrace{\int_{m+1} d\sigma^{R} - d\sigma^{A}}_{\frac{1}{\epsilon_{IR}} - \frac{1}{\epsilon_{IR}}} + \int_{m} \left[\int_{1} \underbrace{d\sigma^{V} + d\sigma^{A}}_{\frac{1}{\epsilon_{IR}} - \frac{1}{\epsilon_{IR}}} \right]$$

Local (pointwise) subtraction of the IR poles

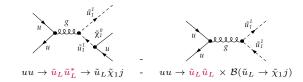
- Based on factorization of collinear&soft singularities
- Process-independent
- Analytically integrable over the single-parton phase-space containing the divergences

$$d\sigma^{A} = \sum_{l} f(\epsilon_{IR}) \times d\sigma_{l}^{B} \otimes V_{l}$$
$$\int_{m+1} d\sigma^{A} = \sum_{l} \int_{m} f(\epsilon_{IR}) \times d\sigma_{l}^{B} \otimes \int_{1} V_{l} = f(\epsilon_{IR}) \times \int_{m} d\sigma_{l}^{B} \otimes I$$

 I_{SUSY} (including lpha-dependence [Nagy, Trócsányi]) available @ MadGolem

$$d\sigma^R \longrightarrow d\sigma^R \Big]_{\text{regular}} + d\sigma^{R*} \Big]_{\mathcal{O}(1/(p^2 - m^2))} \\ ug \to \tilde{u}_L \tilde{\chi}_1 j + uu \to \tilde{u}_L \tilde{u}_L^* \to \tilde{u}_L \tilde{\chi}_1 j$$

$$\begin{aligned} d\sigma^R &\longrightarrow d\sigma^R \Big]_{\text{regular}} &+ d\sigma^{R*} \Big]_{\mathcal{O}(1/(p^2 - m^2))} \\ & ug \to \tilde{u}_L \tilde{\chi}_1 j &+ uu \to \tilde{u}_L \tilde{u}_L^* \to \tilde{u}_L \tilde{\chi}_1 j \end{aligned}$$


$$\sigma = \int_{m+1} \ d\,\sigma^R$$

$$\begin{aligned} d\sigma^R &\longrightarrow d\sigma^R \Big]_{\text{regular}} &+ d\sigma^{R*} \Big]_{\mathcal{O}(1/(p^2 - m^2))} \\ & ug \to \tilde{u}_L \tilde{\chi}_1 j &+ uu \to \tilde{u}_L \tilde{u}_L^* \to \tilde{u}_L \tilde{\chi}_1 j \end{aligned}$$

$$\sigma = \int_{m+1} \, d\, \sigma^R \longrightarrow \int_{m+1} \, \left[d\, \sigma^R + d\, \sigma^{R*}(\Gamma_{\bar{\mathfrak{u}}_L}) - d\sigma^{OS}(\Gamma_{\bar{\mathfrak{u}}_L}) \right]$$

$$\begin{aligned} d\sigma^R &\longrightarrow d\sigma^R \Big]_{\text{regular}} &+ d\sigma^{R*} \Big]_{\mathcal{O}(1/(p^2 - m^2))} \\ & ug \to \tilde{u}_L \tilde{\chi}_1 j &+ uu \to \tilde{u}_L \tilde{u}_L^* \to \tilde{u}_L \tilde{\chi}_1 j \end{aligned}$$

$$\sigma = \int_{m+1} \, d\, \sigma^R \longrightarrow \int_{m+1} \, \left[d\, \sigma^R + d\, \sigma^{R*}(\Gamma_{\tilde{\boldsymbol{u}}_L}) - d\sigma^{OS}(\Gamma_{\tilde{\boldsymbol{u}}_L}) \right]$$

Automatized OS Subtraction available @ MadGolem [Beenakker, Höpker, Spira, Zerwas]

$$\begin{aligned} d\sigma^R &\longrightarrow d\sigma^R \Big]_{\text{regular}} &+ d\sigma^{R*} \Big]_{\mathcal{O}(1/(p^2 - m^2))} \\ & ug \to \tilde{u}_L \tilde{\chi}_1 j &+ uu \to \tilde{u}_L \tilde{u}_L^* \to \tilde{u}_L \tilde{\chi}_1 j \end{aligned}$$

$$\sigma = \int_{m+1} \ d\,\sigma^R \longrightarrow \int_{m+1} \ \left[d\,\sigma^R + d\,\sigma^{R*}(\Gamma_{\,\check{\boldsymbol{u}}_L}) - d\sigma^{OS}(\Gamma_{\,\check{\boldsymbol{u}}_L}) \right]$$

 $uu \to \tilde{u}_L \tilde{u}_L^* \to \tilde{u}_L \tilde{\chi}_1 j \quad - \quad uu \to \tilde{u}_L \tilde{u}_L \times \mathcal{B}(\tilde{u}_L \to \tilde{\chi}_1 j)$

$$\frac{d\sigma^{OS}}{dM^2} \,=\, \sigma^{Born}\,\frac{m_{\tilde{u}_L}\,\Gamma_{\tilde{u}_L}/\pi}{(M^2 - m_{\tilde{u}_L}^2) + m^2\,\Gamma_{\tilde{u}_L}^2} + \mathcal{O}\left(\frac{1}{(M^2 - m_{\tilde{u}_L}^2)}\right)$$

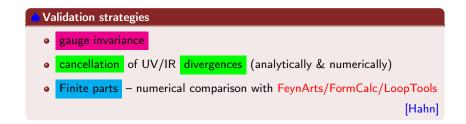
- Pointwise subtraction of the OS poles analogue to CS dipoles
 Avoids double-counting & preserves gauge invariance & spin correlations
- $\Gamma_{\tilde{u}_L}$ as regulator \Rightarrow dependence cancels in the final results

Outline

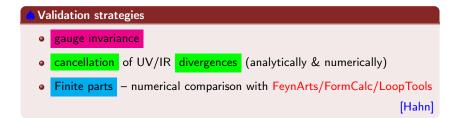
1 Motivating MadGolem

2 Deconstructing MadGolem

- General architecture, modules & flowchart
- Handling the loops
- Handling the divergences


3 Testing MadGolem

Using MadGolem


- The user's perspective
- Applications to New Physics

MadGolem in a nutshell

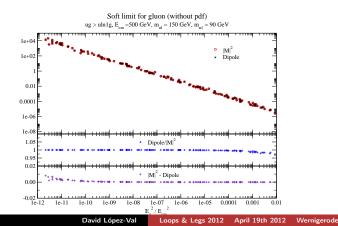
Testing MadGolem: virtual corrections

Testing MadGolem: virtual corrections

An explicit example: SUSY-QCD 1-loop virtual corrections to $uar{u} o ilde{\chi}_1^0 ilde{\chi}_1^0$			
	σ^{NLO} (MadGolem)	σ^{NLO} (FormCalc)	
$Z^0 - ar{u} - u$ vertex	$-1.3064(1) \times 10^{-7}$	$-1.3064(5) \times 10^{-7}$	
$ ilde{\chi}_1 - u - ilde{u}_L$ vertex	$1.0916(3) \times 10^{-8}$	$1.091(2) \times 10^{-8}$	
$ ilde{u}_L$ self-energy	$1.6375(1) \times 10^{-5}$	$1.637(1) \times 10^{-5}$	
boxes	$1.858(2) \times 10^{-7}$	$1.86(4) \times 10^{-7}$	

Testing MadGolem: IR divergences

Validation strategies

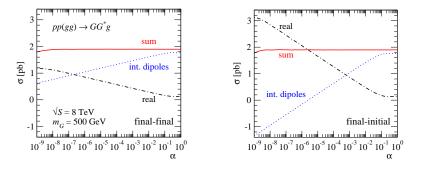

- α dependence [Nagy, Trócsányi] & behavior in the soft and collinear limits, for all dipoles
- Numerical stability and convergence

Testing MadGolem: IR divergences

Validation strategies

- α dependence [Nagy, Trócsányi] & behavior in the soft and collinear limits, for all dipoles
- Numerical stability and convergence

 \Rightarrow Diving in the soft/collinear region for $pp \rightarrow \tilde{u}_L \tilde{\chi}_1$



Testing MadGolem: IR divergences

Validation strategies

- α dependence [Nagy, Trócsányi] & behavior in the soft and collinear limits, for all dipoles
- Numerical stability and convergence

 \blacklozenge Checking α -dependence for $pp \rightarrow GG^*$

Testing MadGolem: On-shell subtraction

Validation strategies

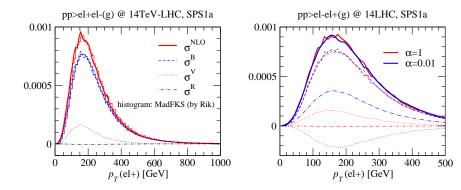
• Independence with respect to the regulator choice Γ/m

• Numerical stability and convergence


Testing MadGolem: On-shell subtraction

Validation strategies

- Independence with respect to the regulator choice Γ/m


Numerical stability and convergence

Performance of the OS Subtraction: $pp(uu \rightarrow \tilde{u}_R \tilde{\chi}_1 u)$

Testing MadGolem: distributions

Cross-checking distributions: MadGolem meets MadFKS

Systematic cross-check always involve:

♠ Systematic cross-check always involve:

i) UV/IR cancellation;

- Systematic cross-check always involve:
- i) UV/IR cancellation;

ii) Finite parts of the one-loop amplitude - comparison to FormCalc/Looptools;

Systematic cross-check always involve:

ii) Finite parts of the one-loop amplitude - comparison to FormCalc/Looptools;

iii) Full NLO cross section - when available, e.g. from GoSam, MadLoop or Prospino

Systematic cross-check always involve:

ii) Finite parts of the one-loop amplitude - comparison to FormCalc/Looptools;

iii) Full NLO cross section - when available, e.g. from GoSam, MadLoop or Prospino

(almost) complete list of processes

	$ pp \to e^+e^- $
SM processes	$\blacklozenge ~ u ar u o d ar d; ~ gg o d ar d$
	$ \blacklozenge \ u\bar{u} \to t\bar{t}, \ gg \to t\bar{t} $
	$\clubsuit \ pp \to \tilde{l}\tilde{l}^*$
SUSY pair (EW)	$\clubsuit pp \to \tilde{\chi}\tilde{\chi}; pp \to \tilde{g}\tilde{\chi}$
	$\clubsuit pp \rightarrow \tilde{q}\tilde{\chi}$
	$\blacklozenge pp \to \tilde{q}\tilde{q}^*; pp \to \tilde{q}\tilde{q}$
SUSY pair (QCD)	$\blacklozenge pp ightarrow ilde{q} ilde{g}$
	$\blacklozenge pp \rightarrow \tilde{g}\tilde{g}$
	$\blacktriangle pp \to GG^*;$
Other BSM	▲ pp → H [±] t ;
	$\blacktriangle pp \to t + X$

Outline

2 Deconstructing MadGolem

- General architecture, modules & flowchart
- Handling the loops
- Handling the divergences

3 Testing MadGolem

4 Using MadGolem

- The user's perspective
- Applications to New Physics

5 MadGolem in a nutshell

3-stage procedure - 3 interfaces \leftrightarrow 3 executables

3-stage procedure - 3 interfaces \leftrightarrow 3 executables

Stage 1: DEFINING THE PROCESS

process card \leftrightarrow ./newprocess nlo

Stage 2: COMPUTING THE AMPLITUDE

./run golem pl

- At this point the user is able to:
 - Select diagram topologies \Rightarrow detailed analysis of the virtual corrections
 - Access the analytical output in several stages \Rightarrow very useful for cross-checking (and to dig out some physics!)

3-stage procedure - 3 interfaces \leftrightarrow 3 executables

Stage 1: DEFINING THE PROCESS

process card \leftrightarrow ./newprocess nlo

Stage 2: COMPUTING THE AMPLITUDE

./run golem pl

- At this point the user is able to:
 - Select diagram topologies \Rightarrow detailed analysis of the virtual corrections
 - Access the analytical output in several stages \Rightarrow very useful for cross-checking (and to dig out some physics!)

Stage 3: EVALUATING THE CROSS-SECTIONS

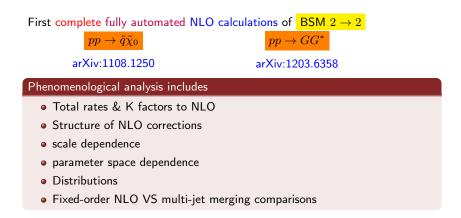
param card.dat, run card.dat \leftrightarrow ./generate events nlo 2 2 myrun

And the user retrieves the results !

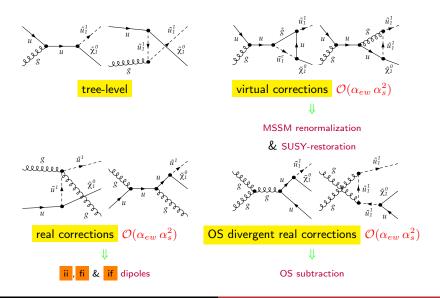
MadGolem results s= 8533.480± 0.793(ab)

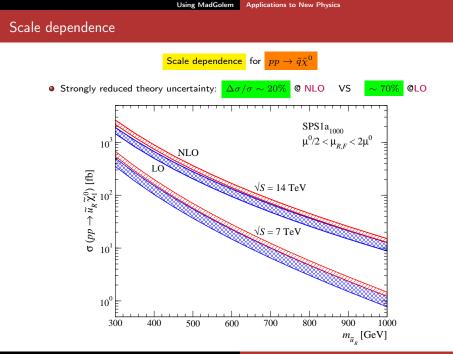
K-factor=(P1+P2+P3)/P1= 1.119

Graph	Cross Sect(ab)	Error(ab)	Events (K)	Eff	Unwgt	Luminosity						
Sum	8533.480	0.793	0	0.0								
LEADING ORDER												
P1_e-e+_ululx	7625.900	0.506	0	0.0		0.00						
total LO = 7625.899999999996												
NLO CONTRIBUTION: Virtual part												
P2_e-e+_ululxg		0.068		0.0		0.00						
total NLO (virtual part)= 578.9900000000001												
NLO CONTRIBUTION: Real part												
P3_e-e+_ululxg	<u>328.590</u>	0.219	0	0.0		0.00						
total NLO (real part) = 328.59000000000003												

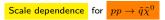

Exploring New Physics with MadGolem

First complete fully automated NLO calculations of BSM $2 \rightarrow 2$

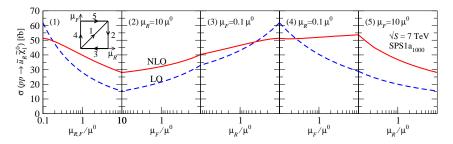

Exploring New Physics with MadGolem



Exploring New Physics with MadGolem



Closing in on our final endeavour

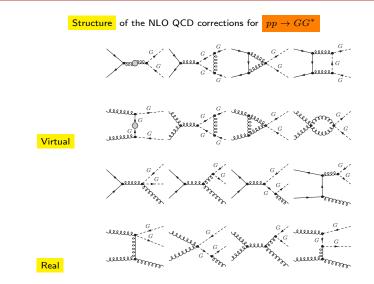


Scale dependence

• Similarly sensitive to variations of μ_F/μ_R alike

Binoth, Gonçalves-Netto, DLV, Mawatari, Plehn, Wigmore, arXiv:1108.1250 [hep-ph]

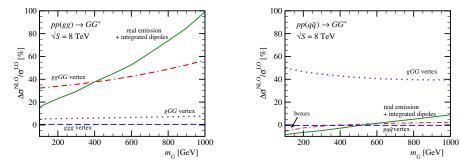
Parameter space dependence


parameter space dependence for $pp
ightarrow ilde{q} \tilde{\chi}^0$

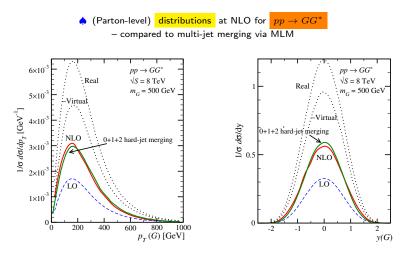
Total rates & K-factors for different SPS points

	\sqrt{S}	σ^{LO}	$\sigma^{\rm NLO}$	K	$m_{\tilde{u}}$	$m_{ ilde{d}}$	$m_{\tilde{g}}$	$m_{\tilde{\chi}_1}$
Benchmark	7	35.27	50.44	1.43	$\tilde{u}_l : 561$	\tilde{d}_l : 568	1000	97
	14	215.02	301.27	1.40	$\tilde{u}_r : 549$	\tilde{d}_{r} : 545	1000	
SPS1b	7	2.77	3.99	1.45	\tilde{u}_l : 872	\tilde{d}_l : 878	938	162
	14	27.21	37.46	1.38	$\tilde{u}_r: 850$	$\tilde{d}_r: 843$	930	102
SPS2	7	0.04	0.07	1.52	\tilde{u}_l : 1554	\tilde{d}_{l} : 1559	782	123
	14	1.21	1.64	1.36	$\tilde{u}_r : 1554$	\tilde{d}_{r} : 1552	102	
SPS3	7	3.15	4.55	1.44	\tilde{u}_l : 854	\tilde{d}_l : 860	935	161
	14	30.20	41.59	1.38	$\tilde{u}_r: 832$	$\tilde{d}_r: 824$	933	
SPS7	7	2.19	3.17	1.45	\tilde{u}_{l} : 896	\tilde{d}_{l} : 904	950	163
	14	22.36	30.80	1.38	$\tilde{u}_{r}: 875$	$\tilde{d}_r: 870$	550	
SPS8	7	0.65	0.95	1.45	\tilde{u}_{l} : 1113	\tilde{d}_l : 1122	839	139
	14	8.73	11.79	1.35	$\tilde{u}_r : 1077$	\tilde{d}_{r} : 1072	0.59	
SPS9	7	0.39	0.58	1.49	\tilde{u}_{l} : 1276	\tilde{d}_{l} : 1279	1872	187
	14	7.65	10.42	1.36	$\tilde{u}_r: 1282$	$\tilde{d}_r:1289$	1072	

Binoth, Gonçalves-Netto, DLV, Mawatari, Plehn, Wigmore, arXiv:1108.1250 [hep-ph]


Structure of the NLO QCD corrections

Gonçalves-Netto, DLV, Mawatari, Plehn, Wigmore, arXiv:1203.6358 [hep-ph]


Structure of the NLO QCD corrections

• Structure of the NLO QCD corrections for $pp \rightarrow GG^*$

Gonçalves-Netto, DLV, Mawatari, Plehn, Wigmore, arXiv:1203.6358 [hep-ph]

Distributions: Fixed-order versus multi-jet merging

Gonçalves-Netto, DLV, Mawatari, Plehn, Wigmore, arXiv:1203.6358 [hep-ph]

Outline

1 Motivating MadGolem

2 Deconstructing MadGolem

- General architecture, modules & flowchart
- Handling the loops
- Handling the divergences

3 Testing MadGolem

Using MadGolem

- The user's perspective
- Applications to New Physics

MadGolem in a nutshell

 \blacklozenge completely **AUTOMATES** the calculation of NLO QCD corrections for generic BSM $2 \to 2$ processes and their interface to Monte Carlo event generators

 \blacklozenge completely **AUTOMATES** the calculation of NLO QCD corrections for generic BSM $2\to 2$ processes and their interface to Monte Carlo event generators

Feynman diagrammatic / fully analytical approach

 \blacklozenge completely AUTOMATES the calculation of NLO QCD corrections for generic BSM $2\to2$ processes and their interface to Monte Carlo event generators

Feynman diagrammatic / fully analytical approach

Provides a **3-COMMAND PATHWAY** from BSM to (parton-level) event rates and distributions at NLO.

 \blacklozenge completely AUTOMATES the calculation of NLO QCD corrections for generic BSM $2\to2$ processes and their interface to Monte Carlo event generators

Feynman diagrammatic / fully analytical approach

Provides a **3-COMMAND PATHWAY** from BSM to (parton-level) event rates and distributions at NLO.

- Fully analytical procedure
- BSM-suitable loop calculator
- Broad coverage of spin & color structures
- Automated OS Subtraction
- Complete support of NLO QCD calculations for the SM, the MSSM and several other extensions.
 - **SUSY dipoles** (with α dependence)
 - UV counterterms & SUSY restoration
- Automatic generation of (parton-level) distributions

- Fully analytical procedure
- BSM-suitable loop calculator
- Broad coverage of spin & color structures
- Automated OS Subtraction
- Complete support of NLO QCD calculations for the SM, the MSSM and several other extensions.
 - **SUSY dipoles** (with α dependence)
 - UV counterterms & SUSY restoration
- Automatic generation of (parton-level) distributions

- Fully analytical procedure
- BSM-suitable loop calculator
- Broad coverage of spin & color structures
- Automated OS Subtraction
- Complete support of NLO QCD calculations for the SM, the MSSM and several other extensions.
 - **SUSY dipoles** (with α dependence)
 - UV counterterms & SUSY restoration
- Automatic generation of (parton-level) distributions

- Fully analytical procedure
- BSM-suitable loop calculator
- Broad coverage of spin & color structures
- Automated OS Subtraction
- Complete support of NLO QCD calculations for the SM, the MSSM and several other extensions.
 - **SUSY dipoles** (with α dependence)
 - UV counterterms & SUSY restoration
- Automatic generation of (parton-level) distributions

- Fully analytical procedure
- BSM-suitable loop calculator
- Broad coverage of spin & color structures
- Automated OS Subtraction
- Complete support of NLO QCD calculations for the SM, the MSSM and several other extensions.
 - **SUSY dipoles** (with α dependence)
 - UV counterterms & SUSY restoration
- Automatic generation of (parton-level) distributions

- Fully analytical procedure
- BSM-suitable loop calculator
- Broad coverage of spin & color structures
- Automated OS Subtraction
- Complete support of NLO QCD calculations for the SM, the MSSM and several other extensions.
 - **SUSY dipoles** (with α dependence)
 - UV counterterms & SUSY restoration
- Automatic generation of (parton-level) distributions

- ${\small \bullet}~$ Complete the full automation of $2 \rightarrow 2$ @ MSSM
- Complete the cross-checking program
- Extend the supported BSM models
- Prepare the code for its public release (structure, interfaces, robustness) $\mathcal{O}(\mathrm{few\ months})$

- $\bullet~$ Complete the full automation of $2 \rightarrow 2~@$ MSSM
- Complete the cross-checking program
- Extend the supported BSM models
- Prepare the code for its public release (structure, interfaces, robustness) $\mathcal{O}(\mathrm{few\ months})$

- ${\small \bullet}~$ Complete the full automation of $2 \rightarrow 2$ @ MSSM
- Complete the cross-checking program
- Extend the supported BSM models
- Prepare the code for its public release (structure, interfaces, robustness) $\mathcal{O}(\mathrm{few\ months})$

- ${\small \bullet}~$ Complete the full automation of $2 \rightarrow 2$ @ MSSM
- Complete the cross-checking program
- Extend the supported BSM models
- Prepare the code for its public release (structure, interfaces, robustness) O(few months)

- ${\small \bullet}~$ Complete the full automation of $2 \rightarrow 2$ @ MSSM
- Complete the cross-checking program
- Extend the supported BSM models
- Prepare the code for its public release (structure, interfaces, robustness) $\mathcal{O}(\text{few months})$

Future directions

- ${\small \bullet}~$ Complete the full automation of $2 \rightarrow 2$ @ MSSM
- Complete the cross-checking program
- Extend the supported BSM models
- Prepare the code for its public release (structure, interfaces, robustness) O(few months)

Engaging collaboration: lines of common interest

- MadGolem & MadGraph5 : [Alwall et al.]: recode the extended MadDipole module of MadGolem into MadGraph5
- MadGolem & MadDM : [Alwall, Backovic, Kong, McCasey]: use of the MadGolem loop calculator for the analysis of loop-induced DM decay processes
- \rightarrow completely unmatched feature to e.g. MicroMEGAS.
- MadGolem & FeynRules : [Christensen, Duhr, Fuks]:

Automating the generation of UV counterterms for NLO $\mathcal{O}(\alpha_s)$ corrections to generic New Physics models.

```
MadGolem & GoSam : [Cullen, Heinrich, et al.]:
Dealing with higher dimensional operators
```

Farewell

MadGolem contributes to extending bridges

Farewell

MadGolem contributes to extending bridges

Theory

Experiment

Farewell

MadGolem contributes to extending bridges

THANKS A LOT !!

Experiment