Decomposing Feynman rules

Dirk Kreimer, Humboldt University, Berlin

Supported by an Alexander von Humboldt Chair by the Alexander von Humboldt Foundation and the BMBF

Joint work with Spencer Bloch, arXiv:1007.0338, and Francis Brown, arXiv:1112.1180.

LL2012, Weringerode, April 2012

Hopf algebra of graphs $H=\mathbb{Q} 1 \oplus \bigoplus_{j=1}^{\infty} H^{j}$

- The coproduct

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\overbrace{\sum_{\gamma=\cup_{i} \gamma_{i}, \omega_{4}\left(\gamma_{i}\right) \geq 0}}^{\Delta^{\prime}(\Gamma)} \gamma \otimes \Gamma / \gamma \tag{1}
\end{equation*}
$$

Hopf algebra of graphs $H=\mathbb{Q} 1 \oplus \bigoplus_{j=1}^{\infty} H^{j}$

- The coproduct

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\overbrace{\sum_{\gamma=\cup_{i} \gamma_{i}, \omega_{4}\left(\gamma_{i}\right) \geq 0}}^{\Delta^{\prime}(\Gamma)} \gamma \otimes \Gamma / \gamma \tag{1}
\end{equation*}
$$

- The antipode

$$
\begin{equation*}
S(\Gamma)=-\Gamma-\sum S(\gamma) \Gamma / \gamma=-m(S \otimes \mathrm{P}) \Delta \tag{2}
\end{equation*}
$$

Hopf algebra of graphs $H=\mathbb{Q} 1 \oplus \bigoplus_{j=1}^{\infty} H^{j}$

- The coproduct

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\overbrace{\sum_{\gamma=\cup_{i} \gamma_{i}, \omega_{4}\left(\gamma_{i}\right) \geq 0} \gamma \otimes \Gamma / \gamma}^{\Delta^{\prime}(\Gamma)} \tag{1}
\end{equation*}
$$

- The antipode

$$
\begin{equation*}
S(\Gamma)=-\Gamma-\sum S(\gamma) \Gamma / \gamma=-m(S \otimes \mathrm{P}) \Delta \tag{2}
\end{equation*}
$$

- The character group

$$
\begin{equation*}
G_{V}^{H} \ni \Phi \Leftrightarrow \Phi: H \rightarrow V, \Phi\left(h_{1} \cup h_{2}\right)=\Phi\left(h_{1}\right) \Phi\left(h_{2}\right) \tag{3}
\end{equation*}
$$

Hopf algebra of graphs $H=\mathbb{Q} 1 \oplus \bigoplus_{j=1}^{\infty} H^{j}$

- The coproduct

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\overbrace{\sum_{\gamma=\cup_{i} \gamma_{i}, \omega_{4}\left(\gamma_{i}\right) \geq 0} \gamma \otimes \Gamma / \gamma}^{\Delta^{\prime}(\Gamma)} \tag{1}
\end{equation*}
$$

- The antipode

$$
\begin{equation*}
S(\Gamma)=-\Gamma-\sum S(\gamma) \Gamma / \gamma=-m(S \otimes \mathrm{P}) \Delta \tag{2}
\end{equation*}
$$

- The character group

$$
\begin{equation*}
G_{V}^{H} \ni \Phi \Leftrightarrow \Phi: H \rightarrow V, \Phi\left(h_{1} \cup h_{2}\right)=\Phi\left(h_{1}\right) \Phi\left(h_{2}\right) \tag{3}
\end{equation*}
$$

- The counterterm

$$
\begin{align*}
S_{R}^{\Phi}(\Gamma) & =-R\left(\Phi(h)-\sum S_{R}^{\Phi}(\gamma) \Phi(\Gamma / \gamma)\right) \\
& =-R \Phi\left(m\left(S_{R}^{\Phi} \otimes \Phi P\right) \Delta(\Gamma)\right) \tag{4}
\end{align*}
$$

Hopf algebra of graphs $H=\mathbb{Q} 1 \oplus \bigoplus_{j=1}^{\infty} H^{j}$

- The coproduct

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\overbrace{\sum_{\gamma=\cup_{i} \gamma_{i}, \omega_{4}\left(\gamma_{i}\right) \geq 0} \gamma \otimes \Gamma / \gamma}^{\Delta^{\prime}(\Gamma)} \tag{1}
\end{equation*}
$$

- The antipode

$$
\begin{equation*}
S(\Gamma)=-\Gamma-\sum S(\gamma) \Gamma / \gamma=-m(S \otimes \mathrm{P}) \Delta \tag{2}
\end{equation*}
$$

- The character group

$$
\begin{equation*}
G_{V}^{H} \ni \Phi \Leftrightarrow \Phi: H \rightarrow V, \Phi\left(h_{1} \cup h_{2}\right)=\Phi\left(h_{1}\right) \Phi\left(h_{2}\right) \tag{3}
\end{equation*}
$$

- The counterterm

$$
\begin{align*}
S_{R}^{\Phi}(\Gamma) & =-R\left(\Phi(h)-\sum S_{R}^{\Phi}(\gamma) \Phi(\Gamma / \gamma)\right) \\
& =-R \Phi\left(m\left(S_{R}^{\Phi} \otimes \Phi P\right) \Delta(\Gamma)\right) \tag{4}
\end{align*}
$$

- The renormalized Feynman rules

$$
\Phi_{R}=m\left(S_{R}^{\Phi} \otimes \Phi\right) \Delta
$$

BCFW and the core Hopf algebra

- a sequence of quotient Hopf algebras by looking at short distance singularities in $2 k$ dimensions

$$
\begin{align*}
H_{0} \subset H_{2} & \subset H_{4} \subset \cdots \subset H_{2 k} \subset \cdots H_{\infty} \tag{6}\\
\Delta_{4}^{\prime}(\times) & =X \otimes \otimes+\infty \otimes \\
\Delta_{\infty}^{\prime}(X) & =2 \tag{7}
\end{align*}
$$

BCFW and the core Hopf algebra

- a sequence of quotient Hopf algebras by looking at short distance singularities in $2 k$ dimensions

$$
\begin{align*}
& H_{0} \subset H_{2} \subset H_{4} \subset \cdots \subset H_{2 k} \subset \cdots H_{\infty} \tag{6}\\
& \Delta_{4}^{\prime}(\times)=X \otimes \times \infty+\infty \otimes \infty \\
& \Delta_{\infty}^{\prime}(\times)=2
\end{align*}
$$

- the primitives are all one-loop

BCFW and the core Hopf algebra

- a sequence of quotient Hopf algebras by looking at short distance singularities in $2 k$ dimensions

$$
\begin{equation*}
H_{0} \subset H_{2} \subset H_{4} \subset \cdots \subset H_{2 k} \subset \cdots H_{\infty} \tag{6}
\end{equation*}
$$

- the primitives are all one-loop
- quantum gravity: $H_{\text {ren }}=H_{\infty}, \omega_{4}(\Gamma)=2|\Gamma|+2$

BCFW and the core Hopf algebra

- a sequence of quotient Hopf algebras by looking at short distance singularities in $2 k$ dimensions

$$
\begin{align*}
H_{0} \subset H_{2} & \subset H_{4} \subset \cdots \subset H_{2 k} \subset \cdots H_{\infty} \tag{6}\\
\Delta_{4}^{\prime}(\times) & =X \otimes \times \infty+\infty \otimes \infty \\
\Delta_{\infty}^{\prime}(X) & =2 \tag{7}
\end{align*}
$$

- the primitives are all one-loop
- quantum gravity: $H_{\text {ren }}=H_{\infty}, \omega_{4}(\Gamma)=2|\Gamma|+2$
- Hochschild cohomology, co-ideals: trade loop for leg expansion

BCFW and the core Hopf algebra

- a sequence of quotient Hopf algebras by looking at short distance singularities in $2 k$ dimensions

$$
\begin{equation*}
H_{0} \subset H_{2} \subset H_{4} \subset \cdots \subset H_{2 k} \subset \cdots H_{\infty} \tag{6}
\end{equation*}
$$

- the primitives are all one-loop
- quantum gravity: $H_{\text {ren }}=H_{\infty}, \omega_{4}(\Gamma)=2|\Gamma|+2$
- Hochschild cohomology, co-ideals: trade loop for leg expansion

- KLT relations or kinematic STU \leftrightarrow co-ideal respected

Kinematics and Cohomology

- Exact co-cycles

$$
\begin{equation*}
\left[B_{+}^{r, j}\right]=B_{+}^{r ; j}+b \phi^{r ; j} \tag{8}
\end{equation*}
$$

with $\phi^{r ; j}: H \rightarrow \mathbb{C}$

Kinematics and Cohomology

- Exact co-cycles

$$
\begin{equation*}
\left[B_{+}^{r, j}\right]=B_{+}^{r ; j}+b \phi^{r ; j} \tag{8}
\end{equation*}
$$

with $\phi^{r ; j}: H \rightarrow \mathbb{C}$

- Variation of momenta

$$
\begin{equation*}
G^{R}(\{g\}, \ln s,\{\Theta\})=1 \pm \Phi_{\ln s,\{\Theta\}}^{R}\left(X^{r}(\{g\})\right) \tag{9}
\end{equation*}
$$

with $X^{r}=1 \pm \sum_{j} g^{j} B_{+}^{r ; j}\left(X^{r} Q^{j}(g)\right), b B_{+}^{r ; j}=0$. Then, for kinematic renormalization schemes:

$$
\begin{aligned}
& \{\Theta\} \rightarrow\left\{\Theta^{\prime}\right\} \Leftrightarrow B_{+}^{r ; j} \rightarrow B_{+}^{r, j}+b \phi^{r, j} . \\
& \Phi_{L_{1}+L_{2},\{\Theta\}}^{R}=\Phi_{L_{1},\{\Theta\} \star \Phi_{L_{2},\{\Theta\}}^{R} .}^{\Phi^{R}\left(\ln s,\{\Theta\},\left\{\Theta_{0}\right\}\right)=\Phi_{\text {fin }}^{-1}\left(\left\{\Theta_{0}\right\} \star \Phi_{1-\text { scale }}^{R}(\ln s) \star \Phi_{\text {fin }}(\{\Theta\}) .\right.} .
\end{aligned}
$$

Graph Polynomials

$$
\begin{equation*}
0 \rightarrow H^{1}(\Gamma) \rightarrow \mathbb{Q}^{E_{\Gamma}} \rightarrow \mathbb{Q}^{V_{\Gamma}, 0} \rightarrow 0 . \tag{10}
\end{equation*}
$$

$\left\{h_{i}\right\}$ basis of homology (loops!)

Graph Polynomials

$$
\begin{equation*}
0 \rightarrow H^{1}(\Gamma) \rightarrow \mathbb{Q}^{E_{\Gamma}} \rightarrow \mathbb{Q}^{V_{\Gamma}, 0} \rightarrow 0 . \tag{10}
\end{equation*}
$$

$\left\{h_{i}\right\}$ basis of homology (loops!)

- $\left(q_{0}, q_{1}, q_{2}, q_{3}\right)^{T} \rightarrow q_{0} \cdot 1+q_{1} \cdot i+q_{2} \cdot j+q_{3} \cdot k$ quaternionic embedding

Graph Polynomials

$$
\begin{equation*}
0 \rightarrow H^{1}(\Gamma) \rightarrow \mathbb{Q}^{E_{\Gamma}} \rightarrow \mathbb{Q}^{V_{\Gamma}, 0} \rightarrow 0 . \tag{10}
\end{equation*}
$$

$\left\{h_{i}\right\}$ basis of homology (loops!)

- $\left(q_{0}, q_{1}, q_{2}, q_{3}\right)^{T} \rightarrow q_{0} \cdot 1+q_{1} \cdot i+q_{2} \cdot j+q_{3} \cdot k$ quaternionic embedding

$$
N:=\left(\begin{array}{cc}
N_{0}:=\left(\sum_{e \in h_{i} \cap h_{j}} A_{e}\right)_{i j} \mathbb{I} & \sum_{e \in h_{j}} \mu_{e} A_{e} \\
\sum_{e \in h_{j}} \bar{\mu}_{e} A_{e} & \sum_{e \in \Gamma^{[1]}} \bar{\mu}_{e} \mu_{e} A_{e}
\end{array}\right)
$$

Graph Polynomials

$$
\begin{equation*}
0 \rightarrow H^{1}(\Gamma) \rightarrow \mathbb{Q}^{E_{\Gamma}} \rightarrow \mathbb{Q}^{V_{\Gamma}, 0} \rightarrow 0 . \tag{10}
\end{equation*}
$$

$\left\{h_{i}\right\}$ basis of homology (loops!)

- $\left(q_{0}, q_{1}, q_{2}, q_{3}\right)^{T} \rightarrow q_{0} \cdot 1+q_{1} \cdot i+q_{2} \cdot j+q_{3} \cdot k$ quaternionic embedding

$$
N:=\left(\begin{array}{cc}
N_{0}:=\left(\sum_{e \in h_{h} \cap h_{j}} A_{e}\right)_{i j} \mathbb{I} & \sum_{e \in h_{j}} \mu_{e} A_{e} \\
\sum_{e \in h_{j}} \bar{\mu}_{e} A_{e} & \sum_{e \in \Gamma^{[1]}} \bar{\mu}_{e} \mu_{e} A_{e}
\end{array}\right)
$$

- $\left|N_{0}\right|=\psi(\Gamma)$,
$|N|=\phi(\Gamma)$.

Example

$$
r=
$$

$$
\begin{aligned}
& N_{\Gamma}=\left(\begin{array}{ccc}
A_{1}+A_{2}+A_{3} & A_{1}+A_{2} & A_{1} \mu_{1}+A_{2} \mu_{2}+A_{3} \mu_{3} \\
A_{1}+A_{2} & A_{1}+A_{2}+A_{4} & A_{1} \mu_{1}+A_{2} \mu_{2}+A_{4} \mu_{4} \\
A_{1} \bar{\mu}_{1}+A_{2} \bar{\mu}_{2}+A_{3} \bar{\mu}_{3} & A_{1} \bar{\mu}_{1}+A_{2} \bar{\mu}_{2}+A_{4} \bar{\mu}_{4} & \sum_{i=1}^{4} A_{i} \bar{\mu}_{4} \mu_{i}
\end{array}\right) \\
& \psi_{\Gamma}=\left(A_{1}+A_{2}\right)\left(A_{3}+A_{4}\right)+A_{3} A_{4}=\sum_{\text {sp.Tr.T } T} \prod_{e \notin T} A_{e} \\
& \phi_{\Gamma}=\left(A_{3}+A_{4}\right) A_{1} A_{2} p_{a}^{2}+A_{2} A_{3} A_{4} p_{b}^{2}+A_{1} A_{3} A_{4} p_{c}^{2}= \\
& \sum_{\text {sp. } 2-\operatorname{Tr} . T_{1} \cup T_{2}} Q\left(T_{1}\right) \cdot Q\left(T_{2}\right) \prod_{e \notin T_{1} \cup T_{2}} A_{e} .
\end{aligned}
$$

The Feynman rules in projective space

First, $\phi_{\Gamma} \rightarrow \phi_{\Gamma}+\psi_{\Gamma}\left(\sum_{e} m_{e}^{2} A_{e}\right)$.

$$
\begin{aligned}
& \Phi_{\Gamma}^{R}\left(S, S_{0},\left\{\Theta, \Theta_{0}\right\}\right)=\int_{\mathbb{P}^{E-1}\left(\mathbb{R}_{+}\right)} \overbrace{\sum_{f}}^{\text {forestsum }}(-1)^{|f|} \\
& \frac{\ln \frac{\frac{s}{S_{0}} \phi_{\Gamma / f} \psi_{f}+\phi_{f}^{0} \psi_{\Gamma / f}}{\phi_{\Gamma / f}^{0} \psi_{f}+\phi_{f}^{0} \psi_{\Gamma / f}}}{\psi_{\Gamma / f}^{2} \psi_{f}^{2}} \\
& (E-1) \text {-form }
\end{aligned} \underbrace{\Omega_{\Gamma}} \quad l
$$

Note: for 1-scale graphs, $\phi_{\Gamma}=\psi_{\Gamma}^{\bullet}$.

The polylog as a Hodge structure

Iterated integrals: obvious Hopf algebra structure

$$
\begin{gather*}
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-L i_{1}(z) & 2 \pi i & 0 \\
-L i_{2}(z) & 2 \pi i \ln (z) & (2 \pi i)^{2}
\end{array}\right)=\left(C_{1}, C_{2}, C_{3}\right) \tag{11}\\
\operatorname{Var}\left(\Im L i_{2}(z)-\ln |z| \Im L i_{1}(z)\right)=0 \tag{12}
\end{gather*}
$$

Hodge sructure from Hopf algebra structure: branch cut ambiguities columnwise Griffith transversality \Leftrightarrow differential equation

Limiting mixed Hodge structures

- Hopf algebra from flags

$$
\begin{equation*}
f:=\gamma_{1} \subset \gamma_{2} \subset \ldots \subset \Gamma, \Delta^{\prime}\left(\gamma_{i+1} / \gamma_{i}\right)=0 \tag{13}
\end{equation*}
$$

The set of all such flags $F_{\Gamma} \ni f$ determines Hopf algebra structure, $\left|F_{\Gamma}\right|$ is the length of the flag.

Limiting mixed Hodge structures

- Hopf algebra from flags

$$
\begin{equation*}
f:=\gamma_{1} \subset \gamma_{2} \subset \ldots \subset \Gamma, \Delta^{\prime}\left(\gamma_{i+1} / \gamma_{i}\right)=0 \tag{13}
\end{equation*}
$$

The set of all such flags $F_{\Gamma} \ni f$ determines Hopf algebra structure, $\left|F_{\Gamma}\right|$ is the length of the flag.

- It also determines a column vector $v=v\left(F_{\Gamma}\right)$ and a nilpotent $\operatorname{matrix}(N)=\left(N\left(\left|F_{\Gamma}\right|\right)\right),(N)^{k+1}=0, k=\operatorname{corad}(\Gamma)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left(e^{-\ln t(N)}\right) \Phi_{R}\left(v\left(F_{\Gamma}\right)\right)=\left(c_{1}^{\ulcorner }(\Theta) \ln s, c_{2}^{\Gamma}(\Theta), c_{k}^{\Gamma}(\Theta) \ln ^{k} s\right)^{T} \tag{14}
\end{equation*}
$$

where k is determined from the co-radical filtration and t is a regulator say for the lower boundary in the parametric representation.

The Feynman graph as a Hodge structure

Hopf algebra structure as above

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
\cdots \\
3
\end{array}\right. \\
& \operatorname{Var}(\Im \cdot!-[\Re \cdot j \cdot \Im \cdot\}+\cdots)=0
\end{aligned}
$$

Hodge structure: cut-reconstructability: from Hopf algebra structure: branch cut ambiguities columnwise Griffith transversality \Leftrightarrow differential equation?
$\zeta\left(s_{1}, \cdots, s_{k}\right)=\sum_{n_{i}<n_{i+1}} \frac{1}{n_{1}^{s_{1}} \ldots n_{k}^{s_{k}}}$

- counting over \mathbb{Q}

$$
\begin{equation*}
1-\frac{x^{3} y}{1-x^{2}}+\frac{x^{12} y^{2}\left(1-y^{2}\right)}{\left(1-x^{4}\right)\left(1-x^{6}\right)}=\prod_{n \geq 3} \prod_{k \geq 1}\left(1-x^{n} y^{k}\right)^{D_{n, k}} \tag{15}
\end{equation*}
$$

\rightarrow first irreducible MZV from planar graphs at 7 loops in scalar field theory (integrability???)
$\zeta\left(s_{1}, \cdots, s_{k}\right)=\sum_{n_{i}<n_{i+1}} \frac{1}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}$

- counting over \mathbb{Q}

$$
\begin{equation*}
1-\frac{x^{3} y}{1-x^{2}}+\frac{x^{12} y^{2}\left(1-y^{2}\right)}{\left(1-x^{4}\right)\left(1-x^{6}\right)}=\prod_{n \geq 3} \prod_{k \geq 1}\left(1-x^{n} y^{k}\right)^{D_{n, k}} \tag{15}
\end{equation*}
$$

\rightarrow first irreducible MZV from planar graphs at 7 loops in scalar field theory (integrability???)

- When is a graph redicible to MZVs? Francis Brown: when it has vertex width three.

$$
\zeta\left(s_{1}, \cdots, s_{k}\right)=\sum_{n_{i}<n_{i+1}} \frac{1}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}
$$

- counting over \mathbb{Q}

$$
\begin{equation*}
1-\frac{x^{3} y}{1-x^{2}}+\frac{x^{12} y^{2}\left(1-y^{2}\right)}{\left(1-x^{4}\right)\left(1-x^{6}\right)}=\prod_{n \geq 3} \prod_{k \geq 1}\left(1-x^{n} y^{k}\right)^{D_{n, k}} \tag{15}
\end{equation*}
$$

\rightarrow first irreducible MZV from planar graphs at 7 loops in scalar field theory (integrability???)

- When is a graph redicible to MZVs? Francis Brown: when it has vertex width three.
- Caution! Non-MZVs at eight loops from non-planar graphs, at nine loops from planar graphs ('A $K 3$ in ϕ^{4}, Brown and Schnetz). Proof from counting points $\left[X_{\Gamma}\right]$ on graph hypersurfaces X_{Γ} over \mathbb{F}_{q}, defined by vanishing of the first Symanzik polynomial. If the graph gives a MZV, $\left[X_{\Gamma}\right]$ better is polynomial in the prime power $q=p^{n}$. Alas, it is not in general, with counterexamples relating graphs to elliptic curves with complex multiplication, and point-coun function a modular form.

Decomposing scales and angles

Consider

and

$$
\begin{equation*}
\Gamma^{2}= \tag{17}
\end{equation*}
$$

We let $S=p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+2 p_{1} \cdot p_{2}+2 p_{2} \cdot p_{3}+2 p_{3} \cdot p_{1}$ (which defines the variable angles $\Theta^{i j}=p_{i} \cdot p_{j} / S, \Theta^{e}=m_{e}^{2} / S$) and subtract symmetrically say at $S_{0}, \Theta_{0}^{i j}=\frac{1}{3}\left(4 \delta_{i j}-1\right)$ and $\Theta_{0}^{e}=m_{e}^{2} / S_{0}$, which specifies the fixed angles Θ_{0}.

$$
\begin{equation*}
\Phi_{\Gamma}^{R}=\frac{\ln \frac{\frac{S}{S_{0}} \phi_{\Gamma}(\Theta)}{\phi_{\Gamma}\left(\Theta_{0}\right)}}{\psi_{\Gamma}^{2}} \Omega_{\Gamma} . \tag{18}
\end{equation*}
$$

To find the desired decomposition, we use

$$
\begin{equation*}
\Delta^{2}(\Gamma)=\Gamma \otimes \mathbb{I} \otimes \mathbb{I}+\mathbb{I} \otimes \Gamma \otimes \mathbb{I}+\mathbb{I} \otimes \mathbb{I} \otimes \Gamma . \tag{19}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\Phi_{\Gamma}^{R}=\Phi_{\mathrm{fin}}^{-1}\left(\Theta_{0}\right)(\Gamma)+\Phi_{1-\mathrm{s}}^{R}\left(S / S_{0}\right)(\Gamma)+\Phi_{\mathrm{fin}}(\Theta)(\Gamma) \tag{20}
\end{equation*}
$$

We have

$$
\begin{gather*}
\Phi_{\text {fin }}^{-1}\left(\Theta_{0}\right)(\Gamma)=-\frac{\ln \frac{\phi_{\Gamma}\left(\Theta_{0}\right)}{\psi_{\Gamma^{2} \cdot}}}{\psi_{\Gamma}^{2}} \Omega_{\Gamma}, \tag{21}\\
\Phi_{1-\mathrm{s}}^{R}\left(S / S_{0}\right)(\Gamma)=\frac{\ln \frac{S}{S_{0}}}{\psi_{\Gamma^{2}}^{2}} \Omega_{\Gamma}, \tag{22}
\end{gather*}
$$

which integrates to the renormalized value $\Phi_{1-\mathrm{s}}^{R}\left(S / S_{0}\right)(\Gamma)=6 \zeta(3) \ln \frac{S}{S_{0}}$. Finally,

$$
\begin{equation*}
\Phi_{\mathrm{fin}}(\Theta)(\Gamma)=\frac{\ln \frac{\phi_{\Gamma}(\Theta)}{\psi_{\Gamma^{2}}{ }^{\bullet}}}{\psi_{\Gamma}^{2}} \Omega_{\Gamma} . \tag{23}
\end{equation*}
$$

These integrands indeed all converge, which is synonymous for us to say that they can be integrated against $\mathbb{P}^{E-1}\left(\mathbb{R}_{+}\right)$.

