Threshold Production of Unstable Top

Alexander Penin

University of Alberta & TTP Karlsruhe

Loops and Legs in Quantum Field Theory

Wernigerode, Germany, 15-20 April 2012

Topics discussed

Top-antitop threshold production

brief introduction and review

Topics discussed

- Top-antitop threshold production
 - brief introduction and review
- Top width effect:
 - beyond the complex energy shift
 - effective theory of unstable particles "ρNRQCD"
 - unstable top production in NLO and NNLO
 - spurious divergences in pNRQCD

Topics discussed

- Top-antitop threshold production
 - brief introduction and review
- Top width effect:
 - beyond the complex energy shift
 - effective theory of unstable particles "ρNRQCD"
 - unstable top production in NLO and NNLO
 - spurious divergences in pNRQCD
- Based on: A. Penin, J. Piclum, JHEP 1201 (2012) 034

Would be an ideal place to study the top

Would be an ideal place to study the top

- Theory:
 - Allows for the first principle QCD predictions
 - High order results are available (NNNLO is coming!)

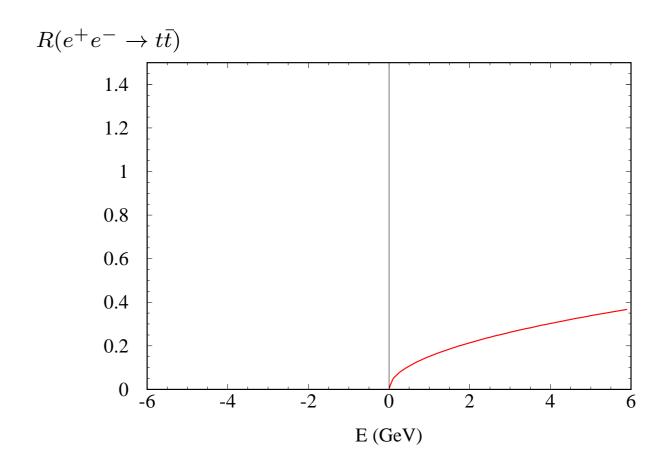
Would be an ideal place to study the top

- Theory:
 - Allows for the first principle QCD predictions
 - High order results are available (NNNLO is coming!)
- Phenomenology:
 - m_t , α_s , Γ_t , y_t , M_H

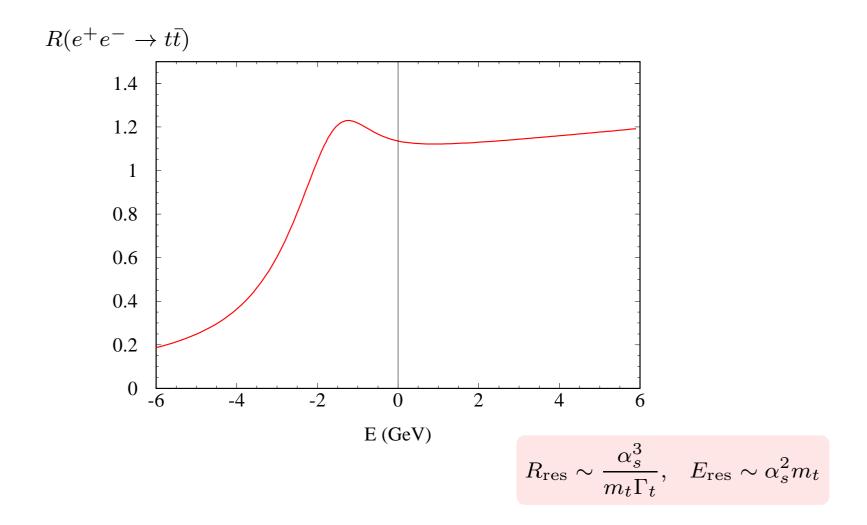
Would be an ideal place to study the top

- Theory:
 - Allows for the first principle QCD predictions
 - High order results are available (NNNLO is coming!)
- Phenomenology:

Born cross section



Coulomb and finite width effects



Perturbation theory for heavy quarkonium

Pinnacle of modern effective field theory!

Perturbation theory for heavy quarkonium

Pinnacle of modern effective field theory!

- Apparent slow convergence
- Possible reasons:
 - Renormalons $n!(\beta_0\alpha_s)^n$
 - Threshold logs $\alpha_s^n \ln^m \alpha_s$

Perturbation theory for heavy quarkonium

Pinnacle of modern effective field theory!

- Apparent slow convergence
- Possible reasons:
 - Renormalons $n!(\beta_0\alpha_s)^n$
 - Threshold logs $\alpha_s^n \ln^m \alpha_s$

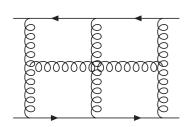
→ Full N³LO analysis is mandatory

N³LO ground state energy

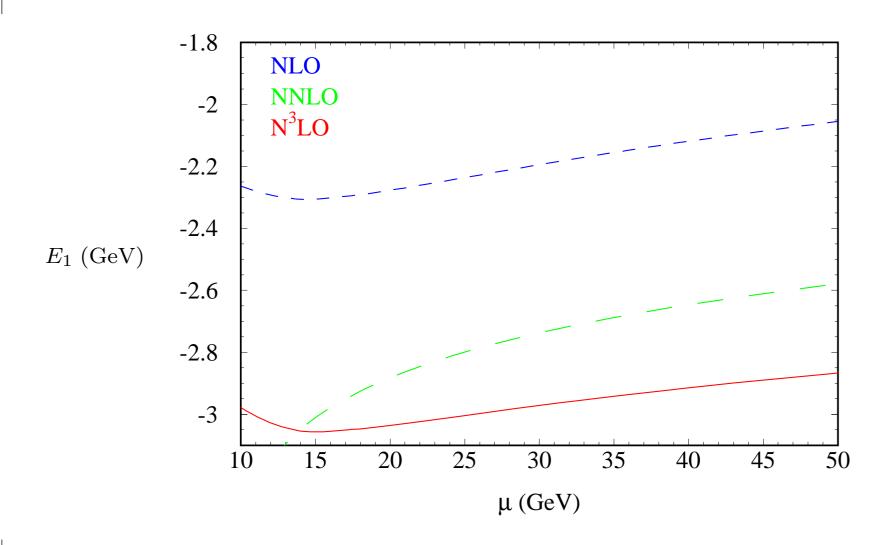
(A. Penin, M. Steinhauser Phys.Lett. B538 (2002) 335-345)

$$\frac{\delta E_1^{\text{N}^3\text{LO}}}{E_1^{\text{LO}}} = \alpha_s^3 \left(58.205 + 15.297 \ln(\alpha_s) + 26.654 \right)$$

Renormalon contribution



N³LO ground state energy



Finite top lifetime

- Resonant approximation
 - ullet complex energy shift $E o E + i \Gamma_t$

(V.Fadin, V.Khoze, JETP Lett. 46 (1987) 525)

not consistent in pNRQCD beyond LO!

Finite top lifetime

Resonant approximation

ullet complex energy shift $E o E + i \Gamma_t$

(V.Fadin, V.Khoze, JETP Lett. 46 (1987) 525)

not consistent in pNRQCD beyond LO!

Nonresonant contribution

Phase space matching (tight cuts on top invariant mass)

(A. Hoang, C. Reißer, P. Ruiz-Femenía, Phys. Rev. D82 (2010) 014005)

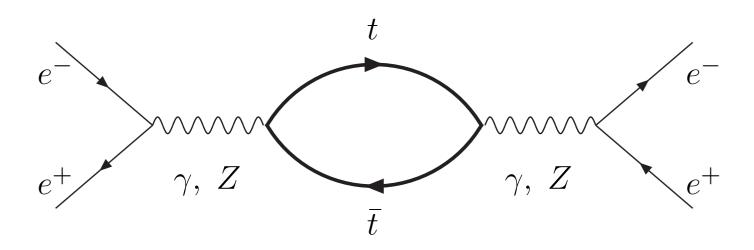
QCD effective theory of unstable particles to NLO

(M. Beneke, B. Jantzen, P. Ruiz-Femenía, Nucl. Phys. B840 (2010) 186)

NRQCD effective theory of unstable particles to NNLO

(A. Penin, J. Piclum, JHEP 1201 (2012) 034)

Stable top



Optical theorem:

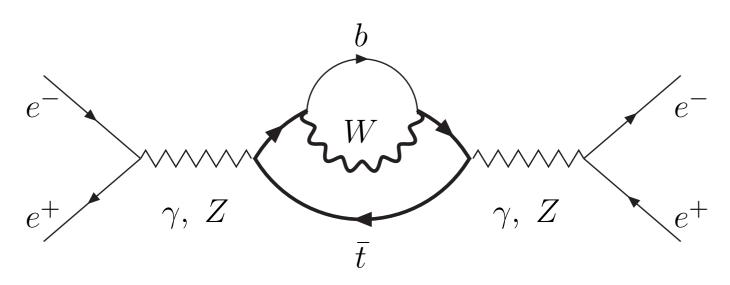
$$R_{res}^{Born} \sim \Im \int \frac{\mathrm{d}^{d-1} \boldsymbol{p}}{(2\pi)^{d-1}} \frac{1}{\boldsymbol{p}^2 - m_t E - i\epsilon} \sim \Im \sqrt{-E - i\epsilon},$$

On-shell top:

$$\Im\left[\frac{1}{\boldsymbol{p}^2 - m_t E - i\epsilon}\right] \sim \delta(\boldsymbol{p}^2 - m_t E),$$

A. Penin, U of A

Unstable top

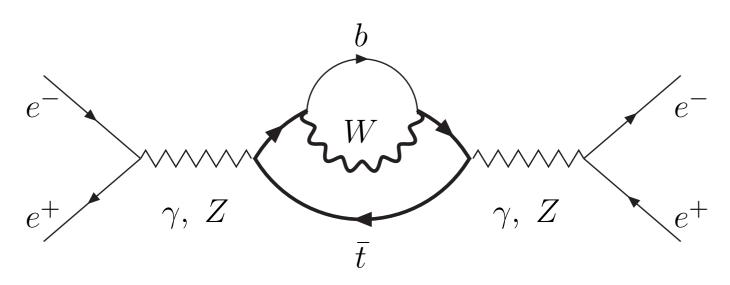


Imaginary part of mass operator:

here
$$\rho = 1 - M_W/m_t$$
, $z = (p^2 - m_t E)/m_t^2 \ll 1$

$$\Im[\Sigma(z)] = \frac{\Gamma_t}{2} - \frac{\Gamma_t}{2} \left[\theta(z-\rho) + \left(\frac{2z}{\rho} - \frac{z^2}{\rho^2} \right) \theta(\rho-z) + \mathcal{O}(\rho,z) \right]$$

Unstable top



Imaginary part of mass operator:

here
$$\rho = 1 - M_W/m_t$$
, $z = (p^2 - m_t E)/m_t^2 \ll 1$

$$\Im[\Sigma(z)] = \frac{\Gamma_t}{2} - \frac{\Gamma_t}{2} \left[\theta(z - \rho) + \left(\frac{2z}{\rho} - \frac{z^2}{\rho^2}\right) \theta(\rho - z) + \mathcal{O}(\rho, z) \right]$$

Resonant contribution

Nonresonant contribution

Resonant contribution

Complex energy shift:

Dyson resummation

$$\frac{1}{\boldsymbol{p}^2 - m_t E - i\epsilon} \to \frac{1}{\boldsymbol{p}^2 - m_t E - i\Gamma_t}$$

Breit-Wigner resonance

$$\delta(\mathbf{p}^2 - m_t E) \to \frac{1}{\pi} \frac{\Gamma_t}{(\mathbf{p}^2 - m_t E)^2 + \Gamma_t^2},$$

Born cross section

$$R_{res}^{Born} \sim \Im\left[\sqrt{-E - i\Gamma_t}\right]$$

Invariant mass distribution:

$$2p^2 \approx m_t^2 - (p_W + p_b)^2$$

Nonresonant contribution

ullet On-shell $t \Rightarrow$ on-shell W and b

- kinematical constraint $M_W^2 < (p_W + p_b)^2 < m_t^2$
- $m{ ilde{ extit{9}}}$ natural cutoff on spatial momentum $0 < m{p}^2 <
 ho m_t^2$
- $\Im[\Sigma] \Gamma_t/2 \neq 0$ for $p^2 \neq 0$ "nonresonant"

A. Penin, U of A

Nonresonant contribution

• On-shell $t \Rightarrow$ on-shell W and b

- kinematical constraint $M_W^2 < (p_W + p_b)^2 < m_t^2$
- $m{ ilde{\hspace{-0.05cm} }}$ natural cutoff on spatial momentum $0 < m{p}^2 <
 ho m_t^2$
- $\Im[\Sigma] \Gamma_t/2 \neq 0$ for $p^2 \neq 0$ "nonresonant"
- Approximation $\rho \ll 1$
 - ullet nonrelativistic t and W , ultrarelativistic b
 - ullet expansion in ho similar to pNRQCD expansion in $v^2 \sim E/m_t$
 - actual value $\rho = 0.53...$

- Scales
 - pNRQCD:

hard m_t soft vm_t ultrasoft v^2m_t

• ρ NRQCD:

hard m_t ρ -soft $ho^{1/2}m_t$ ρ -ultrasoft $ho m_t$

Scales

• pNRQCD:

hard m_t soft vm_t ultrasoft v^2m_t

• ρNRQCD:

hard m_t ρ -soft $ho^{1/2}m_t$ ρ -ultrasoft $ho m_t$

Scale hierarchy and power counting

- pNRQCD scaling: $\alpha_{ew}^{1/2} \sim \alpha_s \sim v \ll 1$, $\Gamma_t/m_t \sim \alpha_{ew}$
- complimentary expansion in ρ with $v \ll \rho^{1/2} \ll 1$
- ρ -Coulomb terms $\alpha_s/\rho^{1/2} \ll 1$

- How to expand?
 - ρ -pNRQCD Feynman rules
 - expansion by regions

- How to expand?
 - **X** ρ -pNRQCD Feynman rules
 - ✓ expansion by regions

NLO nonresonant contribution

Power counting

- resonant contribution
- nonresonant contribution

$$\Im\sqrt{-E - i\Gamma_t} \sim v$$

$$\Gamma_t \sim v^2$$

NLO nonresonant contribution

Power counting

resonant contribution

 $\Im\sqrt{-E-i\Gamma_t}\sim v$

nonresonant contribution

$$\Gamma_t \sim v^2$$

Calculation steps

- treat $\Im[\Sigma] \Gamma_t/2$ as a perturbation
- ullet add all the two-loop diagrams with $t ext{-}W ext{-}b$ cut
- expand in $E/\rho m_t$, expand in $\rho \Rightarrow$ single region left: t and W are ρ -potential, b is ρ -ultrasoft
- recover nonrelativistic propagators and vertices

NLO nonresonant contribution

Power counting

resonant contribution

 $\Im\sqrt{-E - i\Gamma_t} \sim v$

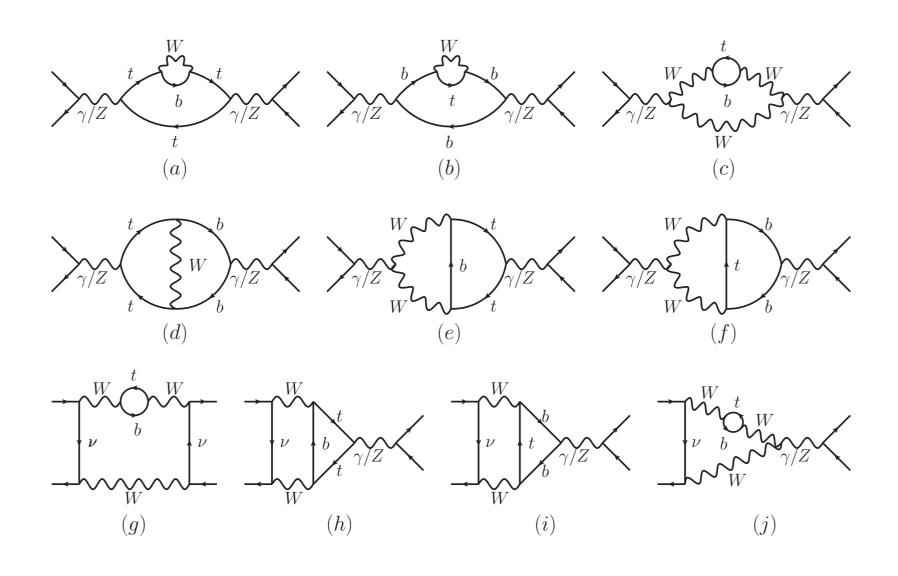
nonresonant contribution

 $\Gamma_t \sim v^2$

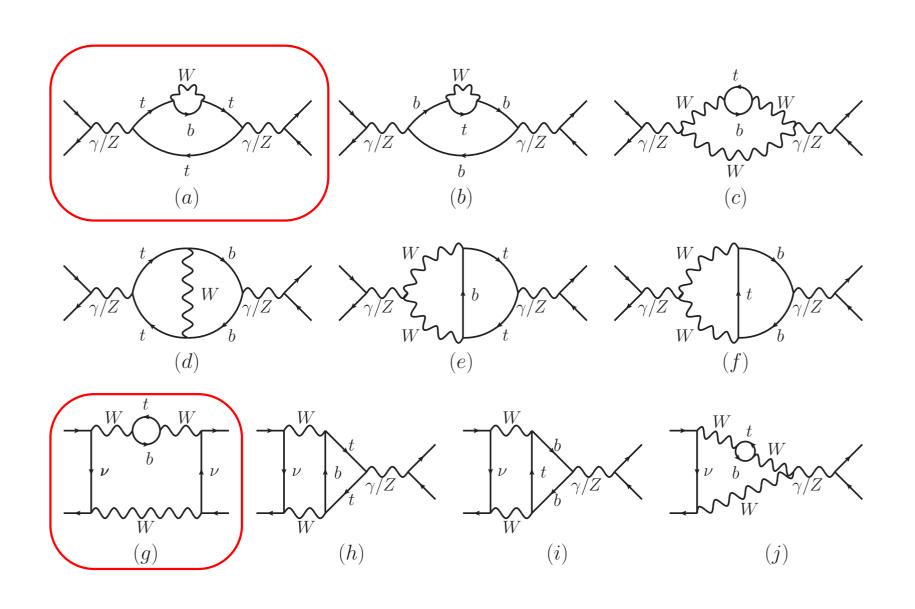
Calculation steps

- treat $\Im[\Sigma] \Gamma_t/2$ as a perturbation
- add all the two-loop diagrams with $t ext{-}W ext{-}b$ cut
- expand in $E/\rho m_t$, expand in $\rho \Leftrightarrow$ single region left: t and W are ρ -potential, b is ρ -ultrasoft
- recover nonrelativistic propagators and vertices
- no expansion in $\rho \Rightarrow$ fully relativistic calculation (M. Beneke et al.)

NLO diagrams



NLO diagrams



A. Penin, U of A

NLO result

• leading term of ρ -expansion

$$R_{nr}^{NLO} = -\frac{24}{\pi \rho^{1/2}} \frac{\Gamma_t}{m_t} \left[\frac{4}{9} + "Z" - \frac{1}{\sin^4 \theta_W} \left(\frac{17}{48} - \frac{9\sqrt{2}}{32} \ln\left(1 + \sqrt{2}\right) \right) \right]$$

NLO result

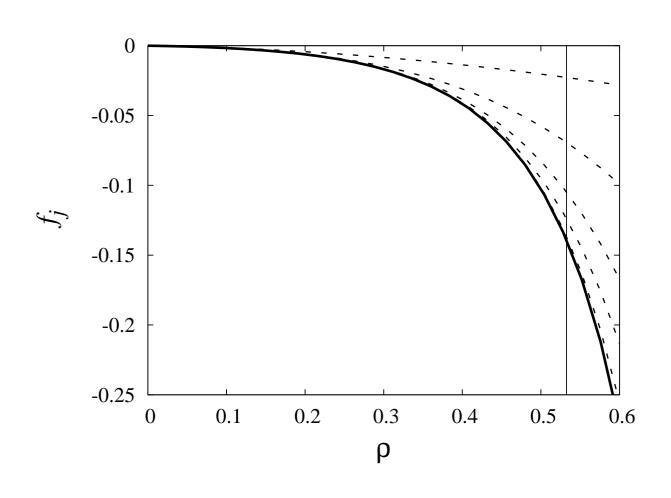
• leading term of ρ -expansion

$$R_{nr}^{NLO} = -\frac{24}{\pi \rho^{1/2}} \frac{\Gamma_t}{m_t} \left[\frac{4}{9} + "Z" - \frac{1}{\sin^4 \theta_W} \left(\frac{17}{48} - \frac{9\sqrt{2}}{32} \ln\left(1 + \sqrt{2}\right) \right) \right]$$

- Convergence?
 - generally not bad
 - for some diagrams Padé is necessary

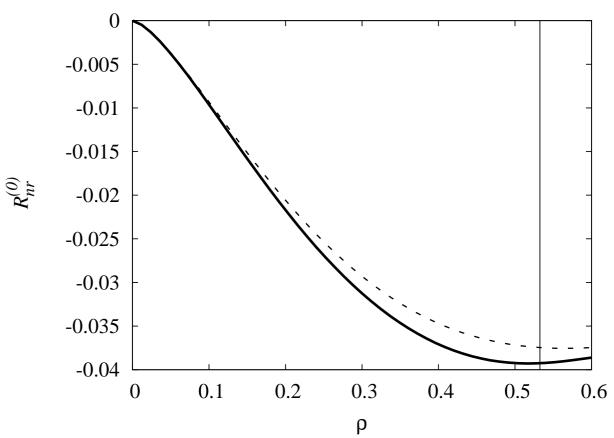
Convergence

diagram "j"



A. Penin, U of A

Convergence



dash line - leading ρ -dependence solid line - exact ρ -dependence

NNLO nonresonant contribution

ρ -leading diagrams



Regions of gluon momentum

- (a) and (d) hard, potential, ρ -potential
- (b) and (d) hard, ρ -soft

VL() result

leading term of ρ -expansion

$$R_{nr}^{N^{2}LO} = \frac{3C_{F}\alpha_{s}}{\pi^{2}\rho^{1/2}} \frac{\Gamma_{t}}{m_{t}} \left\{ \left[\frac{4}{9} + "Z" \right] \left[\frac{\pi^{2}}{\rho^{1/2}} \left(3\ln\left(\sqrt{E^{2} + \Gamma_{t}^{2}}/\rho m_{t}\right) + \frac{3}{2} + 6\ln 2 \right) + (18 + 24\ln 2) \right] + \frac{1}{\sin^{4}\theta_{W}} \left[\frac{22}{3} + \frac{17\pi^{2}}{6} - \frac{17}{2}\ln 2 + (2 - 3\pi^{2} + 9\ln 2) \frac{3\sqrt{2}}{4} \ln\left(1 + \sqrt{2}\right) - \frac{27\sqrt{2}}{8} \left(\ln^{2}\left(1 + \sqrt{2}\right) + \text{Li}_{2}\left(2\sqrt{2} - 2\right) \right) \right] \right\}.$$

VL() result

leading term of ρ -expansion

$$R_{nr}^{N^{2}LO} = \frac{3C_{F}\alpha_{s}}{\pi^{2}\rho^{1/2}} \frac{\Gamma_{t}}{m_{t}} \left\{ \left[\frac{4}{9} + "Z" \right] \left[\frac{\pi^{2}}{\rho^{1/2}} \left(3\ln\left(\sqrt{E^{2} + \Gamma_{t}^{2}}/\rho m_{t}\right) + \frac{3}{2} + 6\ln 2 \right) + (18 + 24\ln 2) \right] + \frac{1}{\sin^{4}\theta_{W}} \left[\frac{22}{3} + \frac{17\pi^{2}}{6} - \frac{17}{2}\ln 2 + (2 - 3\pi^{2} + 9\ln 2) \frac{3\sqrt{2}}{4}\ln\left(1 + \sqrt{2}\right) - \frac{27\sqrt{2}}{8} \left(\ln^{2}\left(1 + \sqrt{2}\right) + \text{Li}_{2}\left(2\sqrt{2} - 2\right) \right) \right] \right\}.$$

- ρ -Coulomb term $\alpha_s/\rho^{1/2}$
- new type of logs $\ln(E/\rho m_t) \sim \ln(v^2/\rho)$

Spurious divergences in pNRQCD

- Problem with complex energy shift in NNLO
 - integral over potential momentum $~m{p}^2/m_t \sim E$ is UV divergent $\delta R \sim \Im[E \ln(E/\mu)] \rightarrow \Gamma_t \ln(E/\mu)$

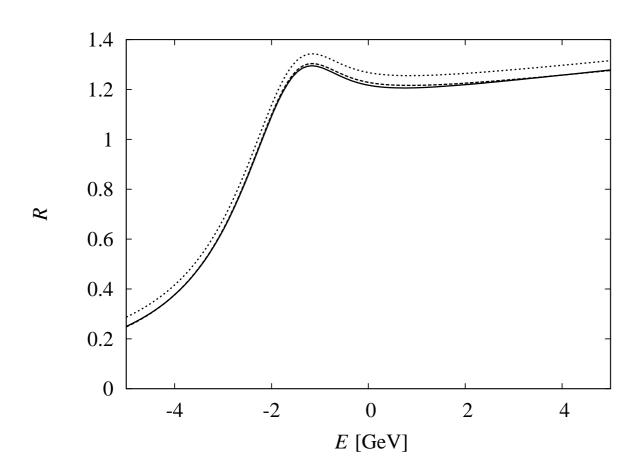
Spurious divergences in pNRQCD

- Problem with complex energy shift in NNLO
 - integral over potential momentum $p^2/m_t \sim E$ is UV divergent $\delta R \sim \Im[E \ln(E/\mu)] \rightarrow \Gamma_t \ln(E/\mu)$
- Physical cutoff
 - $\Im[\Sigma] = 0$ for $p^2/m_t > \rho m_t$

Spurious divergences in pNRQCD

- Problem with complex energy shift in NNLO
 - integral over potential momentum $p^2/m_t \sim E$ is UV divergent $\delta R \sim \Im[E \ln(E/\mu)] \rightarrow \Gamma_t \ln(E/\mu)$
- Physical cutoff
 - $\Im[\Sigma] = 0$ for $p^2/m_t > \rho m_t$
- Expansion by regions
 - integral over ρ -potential region ${m p}^2/m_t \sim \rho m_t$ is IR divergent $\delta R \sim \Gamma_t \ln(\mu/\rho m_t)$
- ightharpoonup finite sum $\delta R \sim \Gamma_t \ln(E/\rho m_t)$

Numerics



dot line - LO dash line - LO+NLO nonresonant solid line - LO+NNLO nonresonant

Summary

ullet Effective theory of ho NRQCD

Summary

- Effective theory of ρ NRQCD
 - based on nonrelativistic expansion in $ho=1-m_t/M_W$
 - systematically accounts for finite width effects in threshold top-antitop production
 - optimized for high-order calculations
 - solve the problem of the spurious divergences

Summary

- Effective theory of ρ NRQCD
 - based on nonrelativistic expansion in $ho=1-m_t/M_W$
 - systematically accounts for finite width effects in threshold top-antitop production
 - optimized for high-order calculations
 - solve the problem of the spurious divergences
 - conceptually clear and aesthetically appealing